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vs.
vs.

MoRitz's tip: write "nice" R code
Check out the tidyverse style guide: https://style.tidyverse.org/index.html

Especially, Chapter 4: Pipes and Chapter 5: ggplot2
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Where are we?
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Sign test
for paired data or single samples

(Wilcoxon) sign-rank test
for paired data or single samples
accounts for sizes of differences

Wilcoxon Rank-sum test
for two independent samples
a.k.a Mann-Whitney U test

Kruskal-Wallis test
nonparametric ANOVA test

Goals for today (Supplemental material)
Why us a nonparametric approach?
What the following tests are & when to use them

How to use R for each test & interpret the results

Additional resource

Chapter 13: Nonparametric tests of Pagano's Principles of Biostatistics, 2022 edition
Can download chapter from OHSU library eBook at
https://ebookcentral.proquest.com/lib/ohsu/detail.action?docID=6950388&pq-
origsite=primo

]
4 / 53

https://ebookcentral.proquest.com/lib/ohsu/detail.action?docID=6950388&pq-origsite=primo
https://ebookcentral.proquest.com/lib/ohsu/detail.action?docID=6950388&pq-origsite=primo


Nonparametric tests

Background: parametric vs nonparametric

Prior inference of means methods had conditions assuming the underlying population(s)
was (were) normal (or at least approximately normal).
Normal distribution is completely described (parameterized) by two parameters:  and .
The first was often the parameter of interest, while the latter was assumed known ( -test)
or estimated ( -tests).

The above are therefore described as parametric procedures.

Nonparametric procedures

Make fewer assumptions about the structure of the underlying population from which
the samples were collected.
Work well when distributional assumptions are in doubt.

μ σ
Z

t

5 / 53



The good and the bad about nonparametric tests

Good

Fewer assumptions
Tests are based on ranks

Therefore outliers have no greater influence than non-outliers.
Since tests are based on ranks we can apply these procedures to ordinal data

(where means and standard deviations are not meaningful).

Drawbacks

Less powerful than parametric tests (due to loss of information when data are converted to
ranks)
While the test is easy, it may require substantial (computer) work to develop a confidence
interval [by "inverting" the test].
Theory was developed for continuous data (where ties are not possible); if population or
data contain many ties, then a correction to the procedures must be implemented.
Some procedures have "large" and "small" sample versions; the small sample versions
require special tables or a computer.
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Sign test
For paired data or single samples
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Intraocular pressure of glaucoma
patients is often reduced by treatment
with adrenaline.
A new synthetic drug is being
considered, but it is more expensive
than the current adrenaline
alternative.
7 glaucoma patients were treated with
both drugs:

one eye with adrenaline and
the other with the synthetic drug

Reduction in pressure was recorded in
each eye after following treatment
(larger numbers indicate greater
reduction)

Patient Adren Synth d Sign

1 3.5 3.2 -0.3 -

2 2.6 3.1 0.5 +

3 3.0 3.3 0.3 +

4 1.9 2.4 0.5 +

5 2.9 2.9 0.0 NA

6 2.4 2.8 0.4 +

7 2.0 2.6 0.6 +

d is the difference in reduction of
pressure: Synth - Adren
Sign is

+ if the difference is positive and
- if the difference is negative

Example: Intraocular pressure of glaucoma patients
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Visualize the differences

Visualize the differences in reduction of pressure  : Synth - Adrend
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Hypotheses

 The median difference in the population is 0
 The median difference in the population is NOT

0

"Statistic"

 = number of positive differences
 = number of negative differences

What are  and  for our example?

Patient Adren Synth d Sign

1 3.5 3.2 -0.3 -

2 2.6 3.1 0.5 +

3 3.0 3.3 0.3 +

4 1.9 2.4 0.5 +

5 2.9 2.9 0.0 NA

6 2.4 2.8 0.4 +

7 2.0 2.6 0.6 +

Hypotheses & "statistic" (Sign test)

H0 :
Ha :

D+

D−

D+ D−
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Exact p-value (Sign test)

If the median difference is 0 (  is true) , then

half the population consists of positive differences
while half have negative differences.

Let 

If the median difference is 0 (  is true),
then a sample of  differences

behaves like  trials in a binomial experiment
where "success" is analogous to seeing a positive difference.

By symmetry (  ), the same distribution applies to negative differences, i.e.,

Thus the (exact) p-value is calculated using the Binomial distribution

H0

p = P(neg. diff.) = P(pos. diff.) = 0.5

H0
n
n

p = 0.5

D+ and D− ∼ Bin(n, p = 0.5)
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7 differences:
1 negative (  )
5 were positive (  )
1 difference is 0 and is discarded

Thus the effective sample size is .

One-sided p-value = probability that we
would see 1 or fewer negative signs among
the  differences, if the median
difference is really 0

Two-sided p-value = 2  One-sided p-value

# 2-sided p-value: 2*P(D^- <= 1)

2*pbinom(1, size = 6, p = 0.5)

## [1] 0.21875

Glaucoma example (exact) p-value

D−

D+

n = 6

n = 6

×

D− ∼ Bin(n = 6, p = 0.5)

p − value = P(D− ≤ 1)

= P(D− = 0) + P(D− = 1)

= (0.5)6 + (0.5)6

≈ 0.1094

6!

0!6!

6!

1!5!

p − value × 2 ≈ 0.2188
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IOP <- tibble(

  Patient = 1:7,

  Adren = c(3.5, 2.6, 3, 1.9, 2.9, 2.4, 2),

  Synth = c(3.2, 3.1, 3.3, 2.4, 2.9, 2.8, 2.6)

  ) %>% 

  mutate(d = Synth - Adren,

    Sign = case_when(

      d < 0 ~ "-",

      d > 0 ~ "+"))

Recall we're testing the population median.
Here's the sample median:

median(IOP$d)

## [1] 0.4

IOP %>% gt()

Patient Adren Synth d Sign

1 3.5 3.2 -0.3 -

2 2.6 3.1 0.5 +

3 3.0 3.3 0.3 +

4 1.9 2.4 0.5 +

5 2.9 2.9 0.0 NA

6 2.4 2.8 0.4 +

7 2.0 2.6 0.6 +

Sign test in R: Glaucoma example

Below we create the dataset as a tibble (and add the signs):
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Sign test in R: Glaucoma example (specifying both columns)

library(BSDA)  # new package!! Make sure to first install it

# Can't "tidy" the output

SIGN.test(x = IOP$Synth, y = IOP$Adren, alternative = "two.sided", conf.level = 0.95)

## 

##     Dependent-samples Sign-Test

## 

## data:  IOP$Synth and IOP$Adren

## S = 5, p-value = 0.2187

## alternative hypothesis: true median difference is not equal to 0

## 95 percent confidence interval:

##  -0.2057143  0.5685714

## sample estimates:

## median of x-y 

##           0.4 

## 

## Achieved and Interpolated Confidence Intervals: 

## 

##                   Conf.Level  L.E.pt U.E.pt

## Lower Achieved CI     0.8750  0.0000 0.5000

## Interpolated CI       0.9500 -0.2057 0.5686

## Upper Achieved CI     0.9844 -0.3000 0.6000
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Sign test in R: Glaucoma example (specifying differences)

# Note output calls this a "One-sample Sign-Test"

SIGN.test(x = IOP$d, alternative = "two.sided", conf.level = 0.95)

## 

##     One-sample Sign-Test

## 

## data:  IOP$d

## s = 5, p-value = 0.2187

## alternative hypothesis: true median is not equal to 0

## 95 percent confidence interval:

##  -0.2057143  0.5685714

## sample estimates:

## median of x 

##         0.4 

## 

## Achieved and Interpolated Confidence Intervals: 

## 

##                   Conf.Level  L.E.pt U.E.pt

## Lower Achieved CI     0.8750  0.0000 0.5000

## Interpolated CI       0.9500 -0.2057 0.5686

## Upper Achieved CI     0.9844 -0.3000 0.6000
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Conclusion

Recall the hypotheses to the sign test:

 The median population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is 0.

 The median population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is NOT 0.

Significance level:  = 0.05
p-value = 0.2188

Conclusion:

The median difference in reduction of intraocular pressure between eyes being treated with
the synthetic drug and adrenaline for seven glaucoma patients was 0.4 (95% CI: -0.2, 0.6).
There is insufficient evidence the reduction in intraocular pressure differs when using the
synthetic drug and adrenaline (2-sided sign test -value = 0.219).

H0 :

Ha :

α

p
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Sign test with large samples: p-value normal approximation

If the sample size is large, say greater than 20,

then binomial probabilities can be approximated using normal probabilities

Normal approximation:

Thus we have the test statistic:

With access to a computer, it's better to use the exact binomial probabilities instead of the
normal approximation.

μ = np = n(0.5) = n/2

σ =√np(1 − p) =√n(0.5)(0.5) = √n/2

z =
D− − n/2

√n/2
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Sign test with one sample

One can use the sign test when testing just one sample.
Note that we did this when in R, when running the sign test using just the differences.
For one sample, we can specify the null population median value:

 The population median is 
 The population median is NOT 

Example: Run sign test for paired data with null :

SIGN.test(x = IOP$d, md = 0.7, alternative = "two.sided", conf.level = 0.95)

## 

##     One-sample Sign-Test

## 

## data:  IOP$d

## s = 0, p-value = 0.01563

## alternative hypothesis: true median is not equal to 0.7

## 95 percent confidence interval:

##  -0.2057143  0.5685714

## sample estimates:

## median of x 

H0 : m
Ha : m

m = 0.7
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(Wilcoxon) Signed-rank test
For paired data or single samples;

accounts for sizes of differences
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(Wilcoxon) Signed-rank test

Like the sign test, the (Wilcoxon) signed-rank test is used for

paired samples (i.e., a single set of differences) or
a one-sample comparison against a specified value

However, this test does make use of information concerning the size of the differences.

Hypotheses

 the population is symmetric around some value

 the population is not symmetric around some value

Even if the population has a mean/median equal to , the test may reject the null if the

population isn't symmetric, thus only use if the data (differences) are symmetric.
If the population is symmetric

then the mean and median coincide,
thus often the null hypothesis is phrased in terms of the median difference being 0

H0 : ~μ0
Ha : ~μ0

~μ0
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Rank the absolute values of the
differences from smallest to largest
For ties, take the average of the highest
and lowest tied ranks

I.e. if ranks 3-7 are tied, then assign
(3+7)/2 = 5 as the rank

Then calculate the signed ranks as +/-
the rank depending on whether the
sign is +/-

IOP_ranks <- IOP %>% 

  mutate(abs_d = abs(d)) %>% 

  arrange(abs_d) %>% 

  mutate(

    Rank = c(NA, 1.5, 1.5, 3, 4.5, 4.5, 6),

    Signed_rank = case_when(

      d < 0 ~ -Rank,

      d > 0 ~ Rank))

IOP_ranks %>% gt()

Patient Adren Synth d Sign abs_d Rank Signed_rank

5 2.9 2.9 0.0 NA 0.0 NA NA

1 3.5 3.2 -0.3 - 0.3 1.5 -1.5

3 3.0 3.3 0.3 + 0.3 1.5 1.5

6 2.4 2.8 0.4 + 0.4 3.0 3.0

2 2.6 3.1 0.5 + 0.5 4.5 4.5

4 1.9 2.4 0.5 + 0.5 4.5 4.5

7 2.0 2.6 0.6 + 0.6 6.0 6.0

Example: calculate signed ranks
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Test statistic (Wilcoxon) Signed-rank test

If the null is true:

The population is symmetric around some point (  , typically), and

The overall size of the positive ranks should be about the same as the overall size of
negative ranks.

Note:

The sum of the ranks  is always ,

which can be broken down as the
sum of the positive ranks (  )
plus the sum of the negative ranks (  )

Thus, any of the following can be used as a test statistic and will lead to the same conclusion:

 - 

~μ0 = 0

1, 2, … ,n n(n + 1)/2

T +

T −

T +

T −

T + T −

Tmin = min(T +,T −) 22 / 53



IOP_ranks %>% gt()

Patient Adren Synth d Sign abs_d Rank Signed_rank

5 2.9 2.9 0.0 NA 0.0 NA NA

1 3.5 3.2 -0.3 - 0.3 1.5 -1.5

3 3.0 3.3 0.3 + 0.3 1.5 1.5

6 2.4 2.8 0.4 + 0.4 3.0 3.0

2 2.6 3.1 0.5 + 0.5 4.5 4.5

4 1.9 2.4 0.5 + 0.5 4.5 4.5

7 2.0 2.6 0.6 + 0.6 6.0 6.0

Sum of the positive ranks

 = 1.5 + 3 + 4.5 + 4.5 + 6 = 19.5

Sum of the negative ranks

 = -1.5

The sum of the ranks  is
always :

Example: calculate sums of signed ranks

T +

T −

1, 2, … ,n
n(n + 1)/2

n(n + 1)/2 = 6(7)/2 = 21
T + + |T −| = 19.5 + | − 1.5| = 21
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Exact p-value (Wilcoxon) Signed-rank test (fyi) (1/2)

Exact p-value is preferable

This is the default method in R's wilcox.test()
if the samples contain less than 50 finite values
and there are no ties

R will automatically use normal approximation method if there are ties

We will not be calculating the exact p-value "by hand." We will be using R for this.

 is the smaller of the calculated sums of the positive and negative ranks
To calculate the exact p-value, we need the probability of each possible sum of ranks.

p − value = 2 ∗ P(min(T +,T −) ≤ t)

t
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Exact p-value (Wilcoxon) Signed-rank test (fyi) (2/2)

To calculate the exact p-value, we need the probability of each possible sum of ranks:
list all possible combinations of positive and negative ranks for the sample size,
calculate the sum of the positive ranks (  ) for each possible combination (or  ),
and
then figure out the probability of each possible  (assuming all combinations are
equally likely)

Example when  : (from https://online.stat.psu.edu/stat415/lesson/20/20.2)

See https://online.stat.psu.edu/stat415/lesson/20/20.2 for more details.

T + T −

T +

n = 3
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Normal approx. p-value (Wilcoxon) Signed-rank test (fyi)

Normal approximation method:
If the number of non-zero differences is at least 16, then a normal approximation can
be used.
Have the option to apply a continuity correct (default) or not

We will not be calculating the p-value "by hand." We will be using R for this.

Test statistic:

 = sample size
Test statistic  follows a standard normal distribution 

Use normal distribution to calculate p-value

See https://online.stat.psu.edu/stat415/lesson/20/20.2 for more details.

ZTmin
=

Tmin −
n(n+1)

4

√ n(n+1)(2n+1)

24

Tmin = min(T +,T −)
n

ZTmin
N(0, 1)
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with exact p-value & specifying columns for paired data

# Exact p-value

wilcox.test(x = IOP$Synth, y = IOP$Adren, paired = TRUE, 

    alternative = c("two.sided"), mu = 0, 

    exact = TRUE)

## Warning in wilcox.test.default(x = IOP$Synth, y = IOP$Adren, paired = TRUE, :

## cannot compute exact p-value with ties

## Warning in wilcox.test.default(x = IOP$Synth, y = IOP$Adren, paired = TRUE, :

## cannot compute exact p-value with zeroes

## 

##     Wilcoxon signed rank test with continuity correction

## 

## data:  IOP$Synth and IOP$Adren

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location shift is not equal to 0
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with exact p-value & running one sample test with differences

# Exact p-value

wilcox.test(x = IOP$d, 

        alternative = c("two.sided"), mu = 0, 

        exact = TRUE, correct = TRUE)

## Warning in wilcox.test.default(x = IOP$d, alternative = c("two.sided"), :

## cannot compute exact p-value with ties

## Warning in wilcox.test.default(x = IOP$d, alternative = c("two.sided"), :

## cannot compute exact p-value with zeroes

## 

##     Wilcoxon signed rank test with continuity correction

## 

## data:  IOP$d

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location is not equal to 0
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with approximate p-value & specifying columns for paired data

# Normal approximation with continuity correction

wilcox.test(x = IOP$Synth, y = IOP$Adren, paired = TRUE, 

        alternative = c("two.sided"), mu = 0, 

        exact = FALSE, correct = TRUE)

## 

##     Wilcoxon signed rank test with continuity correction

## 

## data:  IOP$Synth and IOP$Adren

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location shift is not equal to 0

No more warnings!! However,... should we be using the normal approximation here?
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Conclusion

Recall the hypotheses to the (Wilcoxon) Signed-rank test:

 the population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is symmetric around

 the population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is not symmetric around

Significance level:  = 0.05
p-value = 0.07314

Conclusion:

There is insufficient evidence the differences in reduction in intraocular pressure differs
between the synthetic drug and adrenaline are symmetric about 0 (2-sided Wilcoxon signed
rank test -value = 0.07314)

However,...

H0 :
~μ0 = 0

Ha :
~μ0 = 0

α

p
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Wilcoxon rank-sum test
For two independent samples

a.k.a Mann-Whitney U test
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Wilcoxon rank-sum test

The nonparametric alternative to the two-sample -test
used to analyze two samples selected from separate (independent) populations

Also called the Mann-Whitney U test.

Unlike the signed-rank test, there is no need to assume symmetry

Necessary condition is that the two populations being compared

have the same shape (both right skewed, both left skewed, both symmetric, etc.),
so any noted difference is due to a shift in the median

Since they have the same shape, when summarizing the test, we can describe the results
in terms of a difference in medians.

Hypotheses:

 the two populations have the same median
 the two populations do NOT have the same median

t

H0 :
Ha :
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CPZdata <- tibble(

  control = c(3024, 2164, 864, 780, 125, 110),

  cap_CPZ = c(426, 232, 130, 94, 75, 55)

  ) 

CPZdata %>% 

  get_summary_stats(type = "median") %>% 

  gt()

variable n median

control 6 822

cap_CPZ 6 112

CPZdata %>% gt()

control cap_CPZ

3024 426

2164 232

864 130

780 94

125 75

110 55

Example

Dr. Priya Chaudhary (OHSU) examined the evoked membrane current of dental sensory
neurons (in rats) under control conditions and a mixture of capsaicin plus capsazepine (CPZ).
J. Dental Research} 80:1518--23, 2001.
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Control group Cap + CPZ group

Visualize the data

Do the independent samples have the same distribution?
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1. Combine the two samples together
(keep track of which observations came
from each sample).

2. Rank the full set of 
observations.

If ties exist, assign average ranks to
the tied values (as with the signed-
rank test).

3. Sum the ranks corresponding to those
observations from the smaller sample.

This is a time-saving step; you could
also have used the larger sample.
Call this sum .

Group Current Rank

cap_CPZ 55 1

cap_CPZ 75 2

cap_CPZ 94 3

control 110 4

control 125 5

cap_CPZ 130 6

cap_CPZ 232 7

cap_CPZ 426 8

control 780 9

control 864 10

control 2164 11

control 3024 12

In our example, both groups have equal n;
choose either for computing W.

Calculating ranks and test statistic W

N = n1 + n2

W

WCPZ = 1 + 2 + 3 + 6 + 7 + 8 = 27

Wcontrol = 4 + 5 + 9 + 10 + 11 + 12 = 51
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Exact p-value approach (fyi)

If  are both less than 10, then use an exact test,

otherwise use the large-sample normal approximation.
However, exact method can only be done if no ties are present

p-value is the probability of getting a rank sum  as extreme or more extreme than the
observed one.

Multiply the 1-tail probability by 2 for the 2-tailed probability

To calculate ,

we need to enumerate all possible sets ranks for the sample size,
calculate the sum of ranks for each set of possible ranks,
and then the probability for each sum (assuming each set of ranks is equally likely).

We will not be calculating the p-value "by hand." We will be using R for this.

n1,n2

W

p − value = 2 ⋅ P(WCPZ ≤ 27)

P(WCPZ ≤ 27)
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If the null hypothesis is true, then the mean
of the sum of the ranks from the smaller-
sized group will be

with a standard deviation of

Provided both groups are large (  ),

Example:

We have  and :

The two-sided -value is

Normal approximation approach (fyi)

μW = ,
ns ⋅ (ns + nl + 1)

2

σW = √ .
ns ⋅ nl ⋅ (ns + nl + 1)

12

≥ 10

Z = ≈ Normal(0, 1)
W − μW

σW

W = 27 nl = ns = 6

μW = = 39

σW = √ = √39 ≈ 6.2450

z ≈ = −1.921538

6 ⋅ (6 + 6 + 1)

2

6 ⋅ 6 ⋅ (6 + 6 + 1)

12

27 − 39

6.2450

p

p = 2 ⋅ P(Z < −1.921538) = 0.05466394
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CPZdata

## # A tibble: 6 × 2

##   control cap_CPZ

##     <dbl>   <dbl>

## 1    3024     426

## 2    2164     232

## 3     864     130

## 4     780      94

## 5     125      75

## 6     110      55

CPZdata_long <- CPZdata %>% 

  pivot_longer(cols = c(control,cap_CPZ), 

               names_to = "Group",

               values_to = "Current") %>% 

  arrange(Current) %>% 

  mutate(Rank = 1:12)

CPZdata_long %>% gt()

Group Current Rank

cap_CPZ 55 1

cap_CPZ 75 2

cap_CPZ 94 3

control 110 4

control 125 5

cap_CPZ 130 6

cap_CPZ 232 7

cap_CPZ 426 8

control 780 9

control 864 10

control 2164 11

control 3024 12

R code for creating ranks on previous slide
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Wilcoxon rank-sum test in R: with wide data

glimpse(CPZdata)

## Rows: 6

## Columns: 2

## $ control <dbl> 3024, 2164, 864, 780, 125, 110

## $ cap_CPZ <dbl> 426, 232, 130, 94, 75, 55

Exact p-value

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control, 

            alternative = c("two.sided"), mu = 0, 

            exact = TRUE)

## 

##     Wilcoxon rank sum exact test

## 

## data:  CPZdata$cap_CPZ and CPZdata$control

## W = 6, p-value = 0.06494

## alternative hypothesis: true location shift is not equal to 0
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Wilcoxon rank-sum test in R: with wide data

Normal approximation p-value without CC

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control, 

    alternative = c("two.sided"), mu = 0, 

    exact = FALSE, correct = FALSE) %>% tidy() %>% gt()

statistic p.value method alternative

6 0.05466394 Wilcoxon rank sum test two.sided

Normal approximation p-value with CC

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control, 

    alternative = c("two.sided"), mu = 0, 

    exact = FALSE, correct = TRUE) %>% tidy() %>% gt()

statistic p.value method alternative

6 0.06555216 Wilcoxon rank sum test with continuity correction two.sided

40 / 53



Make data long (if it's not already long):

CPZdata_long <- CPZdata %>% 

  pivot_longer(cols = c(control,cap_CPZ), 

               names_to = "Group",

               values_to = "Current")

head(CPZdata_long)

## # A tibble: 6 × 2

##   Group   Current

##   <chr>     <dbl>

## 1 control    3024

## 2 cap_CPZ     426

## 3 control    2164

## 4 cap_CPZ     232

## 5 control     864

## 6 cap_CPZ     130

Exact p-value

wilcox.test(Current ~ Group, 

            data = CPZdata_long, 

            alternative = c("two.sided"), 

            mu = 0, 

            exact = TRUE) %>% 

  tidy() %>% gt()

statistic p.value method alternative

6 0.06493506 Wilcoxon rank sum exact test two.sided

Wilcoxon rank-sum test in R: with long data
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Conclusion

Recall the hypotheses to the (Wilcoxon) Signed-rank test:

 the control and treated populations have the same median
 the control and treated populations do NOT have the same median

Significance level:  = 0.05
p-value = 0.06494

Conclusion:

There is suggestive but inconclusive evidence that the evoked membrane current of dental
sensory neurons (in rats) differs between the control group and the group exposed to a
mixture of capsaicin plus capsazepine (2-sided Wilcoxon rank-sum test -value = 0.06494).

H0 :
Ha :

α

p
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Kruskal-Wallis test
Nonparametric ANOVA test
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Kruskal-Wallis test: nonparametric ANOVA test

Recall that an ANOVA tests means from more than 2 groups

Conditions for ANOVA include

Sample sizes in each group group are large (each ),
OR the data are relatively normally distributed in each group

Variability is "similar" in all group groups

If these conditions are in doubt, or if the response is ordinal, then the Kruskal-Wallis test is
an alternative.

K-W test is an extension of the (Wilcoxon) rank-sum test to more than 2 groups
With  groups, the K-W test is the same as the rank-sum test

n ≥ 30

H0 : pop median1 = pop median2 =. . . = pop mediank

vs. HA : At least one pair pop mediani ≠ pop medianj for i ≠ j

k = 2
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K-W test statistic:  (fyi)

 is the number of groups,
 is the number of observations in group 

 is the total number of observations across all groups,
 is the sum of ranks for group 

The test statistic  has a Chi-squared distribution with  degrees of freedom:

Ranks are calculated similarly to the (Wilcoxon) rank-sum test.

H

H =
k

∑
i=1

− 3(N + 1)
12

N(N + 1)

R2
i

ni

k
ni i
N = n1 + … + nk

Ri i

H k − 1

H ∼ χ2
k−1
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Ranks for the K-W test

1. Combine the  samples together (keep track of which observations came from each
sample).

2. Rank the full set of  observations.
If ties exist, assign average ranks to the tied values (as with the signed-rank test).

3. Then sum the ranks within each of the  groups
Label the sums of the ranks for each group as .

If  is true, we expect the populations to have the same medians, and thus the ranks to be
similar as well.

k

N = n1 + … + nk

k
R1, … + Rk

H0
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Example: Ozone levels by month (1/2)

airquality data included in base R - no need to load it
Daily air quality measurements in New York, May to September 1973.
Question: do ozone levels differ by month?

glimpse(airquality)

## Rows: 153

## Columns: 6

## $ Ozone   <int> 41, 36, 12, 18, NA, 28, 23, 19, 8, NA, 7, 16, 11, 14, 18, 14, …

## $ Solar.R <int> 190, 118, 149, 313, NA, NA, 299, 99, 19, 194, NA, 256, 290, 27…

## $ Wind    <dbl> 7.4, 8.0, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6, 6.9, 9…

## $ Temp    <int> 67, 72, 74, 62, 56, 66, 65, 59, 61, 69, 74, 69, 66, 68, 58, 64…

## $ Month   <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,…

## $ Day     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,…
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Oz_mnth <- airquality %>% 

  group_by(Month) %>% 

  get_summary_stats(Ozone, 

    show = c("n", "mean", "median", "sd"))

Oz_mnth %>% gt()

Month variable n mean median sd

5 Ozone 26 23.615 18 22.224

6 Ozone 9 29.444 23 18.208

7 Ozone 26 59.115 60 31.636

8 Ozone 26 59.962 52 39.681

9 Ozone 29 31.448 23 24.142

max(Oz_mnth$sd) / min(Oz_mnth$sd)

## [1] 2.179317

ggplot(airquality,

       aes(x = Ozone, y = factor(Month))) +

  geom_boxplot()

Example: Ozone levels by month (2/2)
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ranks_Oz_mnth <- airquality %>% 

  select(Ozone, Month) 

summary(ranks_Oz_mnth)

##      Ozone            Month      

##  Min.   :  1.00   Min.   :5.000  

##  1st Qu.: 18.00   1st Qu.:6.000  

##  Median : 31.50   Median :7.000  

##  Mean   : 42.13   Mean   :6.993  

##  3rd Qu.: 63.25   3rd Qu.:8.000  

##  Max.   :168.00   Max.   :9.000  

##  NA's   :37

ranks_Oz_mnth <- ranks_Oz_mnth %>% 

  drop_na(Ozone) %>% 

  arrange(Ozone) %>% 

  mutate(Rank = 1:nrow(.))

Ranks below do not take into account ties!!

ranks_Oz_mnth

##     Ozone Month Rank

## 1       1     5    1

## 2       4     5    2

## 3       6     5    3

## 4       7     5    4

## 5       7     7    5

## 6       7     9    6

## 7       8     5    7

## 8       9     8    8

## 9       9     8    9

## 10      9     9   10

## 11     10     7   11

## 12     11     5   12

## 13     11     5   13

## 14     11     5   14

## 15     12     5   15

## 16 12 6 16

Example: calculate ranks (fyi) (1/2)
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Ranks below do not take into account ties!!

ranks_Oz_mnth

##     Ozone Month Rank

## 1       1     5    1

## 2       4     5    2

## 3       6     5    3

## 4       7     5    4

## 5       7     7    5

## 6       7     9    6

## 7       8     5    7

## 8       9     8    8

## 9       9     8    9

## 10      9     9   10

## 11     10     7   11

## 12     11     5   12

## 13     11     5   13

## 14     11     5   14

## 15     12     5   15

## 16 12 6 16

Sum of ranks for each group: (not taking
into account ties!!)

ranks_Oz_mnth %>% 

  group_by(Month) %>% 

  summarise(sumRank = sum(Rank))

## # A tibble: 5 × 2

##   Month sumRank

##   <int>   <int>

## 1     5     939

## 2     6     434

## 3     7    2023

## 4     8    1956

## 5     9    1434

Example: calculate ranks (fyi) (2/2)
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K-W test in R

kruskal.test(Ozone ~ Month, data = airquality)

## 

##     Kruskal-Wallis rank sum test

## 

## data:  Ozone by Month

## Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06

kruskal.test(Ozone ~ Month, data = airquality) %>% tidy() %>% gt()

statistic p.value parameter method

29.26658 6.900714e-06 4 Kruskal-Wallis rank sum test

There is sufficient evidence that the median ozone levels are different in at least two months
from May - September, 1973 in New York City (p < 0.001; Kruskal-Wallis test).

(fyi) Since the K-W test is significant, follow-up with pairwise (Wilcoxon) rank-sum tests
using a multiple comparison procedure to identify which months have different medians.51 / 53



Permutation tests & bootstrapping
another option to consider
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Permutation tests & bootstrapping

In some cases we saw that the conditions failed or the sample size was too small for a
normal approximation and there were ties in ranks preventing us from using an exact
method.

Another nonparametric option to consider is a permutation test or bootstrapping.

If you're interested in learning more about this approach, check out the ModernDive
Statistical Inference via Data Science book by Chester Ismay and Albert Kim.

Ch 7: Sampling
Ch 8: Bootstrapping and Confidence Intervals
Ch 9: Hypothesis Testing
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https://moderndive.com/index.html
https://moderndive.com/index.html
https://moderndive.com/7-sampling.html
https://moderndive.com/8-confidence-intervals.html
https://moderndive.com/9-hypothesis-testing.html

