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MoRitz's tip: write "nice" R code

Check out the tidyverse style guide: https://style.tidyverse.org/index.ntml

Especially, Chapter 4. Pipes and Chapter 5. ggplot2

gt

employ<-employ%>%mutate(disability=factor(disability),di
sability=fct_relevel(disability, "none"),disability=fct_r

ecode(disability,amputation="amputee"))

summary(Cemploy)
VS.
o {r}
employ <- employ %>%
mutate(

disability = factor(disability),

# make "none" the first level

disability = fct_relevel(disability,

"none"),

# change level name amputee to amputation

disability = fct_recode(disability,

amputation = "amputee"))

summary(employ)

S fey BN
ggplot(employ,aes(x=disability,y=score,fill=disability,c
olor=disability))+geom_dotplot(binaxis="y",alpha=.5)+geo
m_hline(Caes(yintercept=mean(score)),lty="dashed")+stat_s
ummary(fun="mean",geom="point",size=3,color="grey33",alp

ha=1)+theme(legend.position="none")

VS.

o gpd BN
ggplot(employ,
aes(x = disability, y=score,
fill = disability,
color = disability)) +
geom_dotplot(binaxis = "y", alpha =.5) +
geom_hline(aes(yintercept = mean(score)),
1ty = "dashed") +
stat_summary(fun = "mean",
geom = "point",
size = 3,
color = "grey33",
alpha =1) +
theme(legend.position = "none™)
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Goals for today (Supplemental material)

e \Why us a nonparametric approach?
What the following tests are & when to use them

e Sign test e Wilcoxon Rank-sum test

o for paired data or single samples o for two independent samples
e (Wilcoxon) sign-rank test o a.k.a Mann-Whitney U test

o for paired data or single samples e Kruskal-Wallis test

o gccounts for sizes of differences o nonparametric ANOVA test

e How to use R for each test & interpret the results
Additional resource

e Chapter 13: Nonparametric tests of Pagano's Principles of Biostatistics, 2022 edition

e Can download chapter from OHSU library eBook at
https://ebookcentral.proquest.com/lib/ohsu/detail.action?doclD=6950388&pq-
origsite=primo
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Nonparametric tests

Background: parametric vs nonparametric

e Prior inference of means methods had conditions assuming the underlying population(s)

was (were) normal (or at least approximately normal).
e Normal distribution is completely described (parameterized) by two parameters: 4 and o.

e The first was often the parameter of interest, while the latter was assumed known ( Z-test)
or estimated ( t-tests).

The above are therefore described as parametric procedures.

e Nonparametric procedures

o Make fewer assumptions about the structure of the underlying population from which

the samples were collected.
o Work well when distributional assumptions are in doubt.
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The good and the bad about nonparametric tests

Good

e Fewer assumptions

e Tests are based on ranks
o Therefore outliers have no greater influence than non-outliers.

o Since tests are based on ranks we can apply these procedures to ordinal data
= (Where means and standard deviations are not meaningful).

Drawbacks

e | ess powerful than parametric tests (due to loss of information when data are converted to

ranks)
e \While the test is easy, it may require substantial (computer) work to develop a confidence

interval [by "inverting" the test].
e Theory was developed for continuous data (where ties are not possible); if population or

data contain many ties, then a correction to the procedures must be implemented.
e Some procedures have "large" and "small" sample versions; the small sample versions

require special tables or a computer.
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Sign test

For paired data or single samples




Example: Intraocular pressure of glaucoma patients

Patient Adren Synth d Sign
e |Nntraocular pressure of glaucoma

patients is often reduced by treatment
with adrenaline.

e A new synthetic drug is being
considered, but it is more expensive
than the current adrenaline
alternative.

e 7/ glaucoma patients were treated with

1 35 3.2 -03 -

N

26 3.1 05 +
30 33 03 +

A W

1.9 24 05 +
5 29 29 0.0 NA
6 24 28 04 +

both drugs: 7 20 26 06 +
o one eye with adrenaline and
o the other with the synthetic drug e dis the difference in reduction of
e Reduction in pressure was recorded in oressure: Synth - Adren
each eye after following treatment e Signis
(larger numbers indicate greater o + if the difference is positive and
reduction)

o - if the difference is negative
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Visualize the differences

Visualize the differences in reduction of pressure d : Synth - Adren

1.00 - 1.5+
0.75 -
- ET'LD'
: - —
g 0.50 - E
S 3
0.54
0.25 -
0.00 - ] ® ® © 3 ® 0.0 4
-0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 0.6
d d
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Hypotheses & "statistic" (Sign test)

Hypotheses

H, : The median difference in the population is O
H, : The median difference in the population is NOT
)

"Statistic"

D™ = number of positive differences
D~ = number of negative differences

What are D™ and D~ for our example?

Patient Adren Synth

1

o B W DN

3.5
2.6
3.0
1.9
2.9
2.4
2.0

3.2
3.1
3.3
2.4
2.9
2.8
2.6

d Sign
-0.3 -
0.5 +
0.3 +
0.5 +
0.0 NA
0.4 +
0.6 +
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Exact p-value (Sign test)

If the median difference is O ( Hy is true) , then

o half the population consists of positive differences
o while half have negative differences.

Let p = P(neg. diff.) = P(pos. diff.) = 0.5

If the median difference is O ( Hy is true),
o then a sample of n differences
» pehaves like n trials in a binomial experiment
= Where "success" is analogous to seeing a positive difference.
o By symmetry (p = 0.5), the same distribution applies to negative differences, i.e,

D" and D~ ~ Bin(n,p = 0.5)

Thus the (exact) p-value is calculated using the Binomial distribution
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Glaucoma example (exact) p-value

e "/ differences:
o 1 negative (D)
o 5were positive (D)
o 1difference is O and is discarded

D~ ~ Bin(n = 6,p = 0.5)

e Thus the effective sample size isn = 6.

One-sided p-value = probability that we
would see 1 or fewer negative signs among
the n = 6 differences, if the median
difference is really O

p —value = P(D~ < 1)

— P(D" =0)+P(D =1)

6! .6l 6
= o161 (09" + 7157 (0-5)

~ 0.1094

Two-sided p-value = 2 X One-sided p-value

# 2-sided p-value: 2xP(D"- <= 1)
2*pbinom(1l, size = 6, p = 0.5)

## [1] 0.21875

p — value X 2 ~ (0.2188
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Sign test in R: Glaucoma example

Below we create the dataset as a tibble (and add the signs):

IOP <- tibble( I0
Patient = 1:7,
Adren = c(3.5, 2.6, 3, 1.9,
Synth = ¢(3.2, 3.1, 3.3, 2
) %>%
mutate(d = Synth - Adren,
Sign = case_when(
d < 0 ~ ||_||,
d > 0 ~ ||+||))

Recall we're testing the population median.
Here's the sample median:

median (IOPSd)

## [1] 0.4

%>% gt ()

Patient Adren Synth

1

o o B W DN

3.5
2.6
3.0
1.9
2.9
2.4
2.0

3.2
3.1
3.3
2.4
2.9
2.8
2.6

d Sign

-0.3
0.5
0.3
0.5
0.0
0.4
0.6
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Sign test in R: Glaucoma example (specifying both columns)

library(BSDA) # new package!! Make sure to first dinstall it
# Can't "tidy" the output
SIGN.test(x = IOPSSynth, y = IOP$Adren, alternative = "two.sided", conf.level = 0.95)

##

#H Dependent-samples Sign-Test

H

## data: IOPS$Synth and IOP$Adren

## S = 5, p-value = 0.2187

## alternative hypothesis: true median difference is not equal to ©
## 95 percent confidence interval:

## -0.2057143 0.5685714

## sample estimates:

## median of x-y

## 0.4

H

## Achieved and Interpolated Confidence Intervals:

e

H# Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.8750 0.0000 0.5000

## Interpolated CI 0.9500 -0.2057 0.5686 14/ 53

## Upper Achieved CI 0.9844 -0.3000 0.6000



Sign test in R: Glaucoma example (specifying differences)

# Note output calls this a "One-sample Sign-Test"
SIGN.test(x = IOPS$Sd, alternative = "two.sided", conf.level = 0.95)

##

H One-sample Sign-Test

##

## data: IOPSd

## s = 5, p-value = 0.2187

## alternative hypothesis: true median is not equal to 0
## 95 percent confidence 1interval:

## -0.2057143 0.5685714

## sample estimates:

## median of x

## 0.4

#it

## Achieved and Interpolated Confidence Intervals:
H

H# Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.8750 0.0000 0.5000

## Interpolated CI 0.9500 -0.2057 0.5686

## Upper Achieved CI 0.9844 -0.3000 0.6000
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Conclusion

Recall the hypotheses to the sign test:

H, : The median population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is O.

H, : The median population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is NOT O.

e Significance level: o = 0.05
e p-value =0.2188

Conclusion:

The median difference in reduction of intraocular pressure between eyes being treated with
the synthetic drug and adrenaline for seven glaucoma patients was 0.4 (95% Cl: -0.2, 0.0).
There is insufficient evidence the reduction in intraocular pressure differs when using the
synthetic drug and adrenaline (2-sided sign test p-value = 0.219).
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Sign test with large samples: p-value normal approximation

If the sample size is large, say greater than 20,

o then binomial probabilities can be approximated using normal probabilities

Normal approximation:

p=mnp=mn(0.5) =n/2
o= \/np(l —p) = \/n(O.S)(O.5) = \/n/2

Thus we have the test statistic:

D™ —n/2
Vn/2

With access to a computer, it's better to use the exact binomial probabilities instead of the
normal approximation.

o a—
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Sign test with one sample

e One can use the sign test when testing just one sample.
e Note that we did this when in R, when running the sign test using just the differences.
e For one sample, we can specify the null population median value:

H, : The population median ism
H, : The population median is NOT m

Example: Run sign test for paired data with null m = 0.7:

SIGN.test(x = IOP$Sd, md = 0.7, alternative = "two.sided", conf.level = 0.95)

#H

H One-sample Sign-Test

##

## data: IOPSd

## s = 0, p-value = 0.01563

## alternative hypothesis: true median is not equal to 0.7
## 95 percent confidence 1interval:

## -0.2057143 0.5685714

## sample estimates:

. 18 /53
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(Wilcoxon) Signed-rank test

For paired data or single samples;
accounts for sizes of differences




(Wilcoxon) Signed-rank test

e |ike the sign test, the (Wilcoxon) signed-rank test is used for

o paired samples (i.e., a single set of differences) or
o a one-sample comparison against a specified value

e However, this test does make use of information concerning the size of the differences.

Hypotheses

Hy : the population is symmetric around some value i,
H, : the population is not symmetric around some value [,

e Even if the population has a mean/median equal to [ty the test may reject the null if the

population isn't symmetric, thus only use If the data (differences) are symmetric.

e |fthe population is symmetric
o then the mean and median coincide,
o thus often the null hypothesis is phrased in terms of the median difference being O
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Example: calculate signed ranks

e Rank the absolute values of the TOP_ranks %>% gt ()
differences from smallest to largest
e For ties, take the average of the highest

and lowest tied ranks Patient Adren Synth d Sign abs_d Rank Signed_rank

o |.e.if ranks 3-7 are tied, then assign 5 29 29 00 NA 00 NA NA
(3+7)/2 =5 as the rank 1 35 32-08 - 03 15 15
e Then calculate the signed ranks as +/- 3 30 33 03 4+ 03 15 15
the rank depending on whether the
o 6 24 28 04 + 04 30 3.0
sign is +/-
2 2.6 3.1 05 + 0.5 4.5 4.5
IOP_ranks <- IOP %>% 4 19 24 05 + 05 45 4.5
mutate(abs_d = abs(d)) %>% 7 20 26 06 + 06 6.0 6.0
arrange(abs_d) %>%
mutate(

Rank = c(NA, 1.5, 1.5, 3, 4.5, 4.5, 6),
Signed_rank = case_when(

d < 0 ~ -Rank,

d > 0 ~ Rank))
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Test statistic (Wilcoxon) Signed-rank test

If the null is true:

e The population is symmetric around some point ( i, = 0, typically), and

e The overall size of the positive ranks should be about the same as the overall size of
negative ranks.

Note:

e The sum of theranks 1,2,...,nisalwaysn(n + 1)/2,

e which can be broken down as the
o sum of the positive ranks (T )
o plus the sum of the negative ranks (1™ )

Thus, any of the following can be used as a test statistic and will lead to the same conclusion:

o T+
o T~
e Tt -T~

¢ Tmin — min(T+7T_) 22 /53



Example: calculate sums of signed ranks

IOP_ranks %>% gt()

Patient Adren Synth

5
1

3
6

2.9
Ei5)
3.0
2.4
2.6
1.9
2.0

2.9
3.2
3.3
2.8
3.1
2.4

2.6

d Sign abs_d Rank Signed_rank

0.0

-0.3

0.3
0.4
0.5
0.5
0.6

NA

+

+

0.0
0.3
0.3
0.4
0.5
0.5
0.6

NA
1.5
1.5
3.0
4.5
4.5

6.0

NA

=18

1.5
3.0
4.5
4.5

6.0

e Sum of the positive ranks

o TT=15+3+45+45+6=195
e Sum of the negative ranks

o I'™ =-15

e Thesum oftheranks1,2,...,nis
alwaysn(n + 1)/2:

on(n+1)/2=6(7)/2=21
o TT+|T7|=19.5+|—1.5] =21
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Exact p-value (Wilcoxon) Signed-rank test (fyi) (1/2)

Exact p-value is preferable

o Thisis the default method in R'swilcox.test()
= f the samples contain less than 50 finite values
= and there are no ties
s R will gutomatically use normal approximation method if there are ties

We will not be calculating the exact p-value "by hand." We will be using R for this.

p — value = 2 x P(min(T",T ") < t)

t is the smaller of the calculated sums of the positive and negative ranks

To calculate the exact p-value, we need the probability of each possible sum of ranks.
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Exact p-value (Wilcoxon) Signed-rank test (fyi) (2/2)

e To calculate the exact p-value, we need the probability of each possible sum of ranks:
o list all possible combinations of positive and negative ranks for the sample size,
o calculate the sum of the positive ranks (T'" ) for each possible combination (or T~ ),
and
o then figure out the probability of each possible T'" (assuming all combinations are
equally likely)

Example when n = 3: (from https:/online.stat.psu.edu/stat415/lesson/20/20.2)

P(W=0)=1/8, because there is only one way that W= 0
P(W=1)=1/8, because there is only one way that W= 1
P(W=2)=1/8, because there is only one way that W= 2
P(W = 3) = 2/8, because there are two ways that W =3

P(W=4)=1/8, because there is only one way that W=4
P(W=15)=1/8, because there is only one way that W=5
P(W=6) = 1/8, because there is only one way that W= 6

1 1 1 <1 <3 1
2 -2 2 -2 2 -2
3 3 -3 3 -3 -3 -3
5 4 3 3 2 1

| G2 b =

W |

B3

See https://online.stat.psu.edu/stat415/lesson/20/20.2 for more details.
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Normal approx. p-value (Wilcoxon) Signed-rank test (fyi)

e Normal approximation method:
o Ifthe number of non-zero differences is at least 16, then a normal approximation can
be used.
o Have the option to apply a continuity correct (default) or not
o We will not be calculating the p-value "by hand." We will be using R for this.

Test statistic:

Tmz’n — @
ZTmin —
\/n(n+1)(2n—l—1)
24

o Trinn =min(T+,T7)
e 1. = sample size
e Test statistic Zr . follows a standard normal distribution N (0, 1)

e Use normal distribution to calculate p-value

See https://online.stat.psu.edu/stat415/lesson/20/20.2 for more details. 26 /53
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with exact p-value & specifying columns for paired data

# Exact p-value

wilcox.test(x = IOP$Synth, y = IOP$Adren, paired
alternative = c("two.sided"), mu = 0,
exact = TRUE)

TRUE,

## Warning in wilcox.test.default(x = IOP$Synth, y = IOP$Adren, paired = TRUE,
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = IOP$Synth, y = IOP$Adren, paired = TRUE,

## cannot compute exact p-value with zeroes

##

## Wilcoxon signed rank test with continuity correction
##

## data: IOPS$Synth and IOP$Adren

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location shift is not equal to 0 )
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with exact p-value & running one sample test with differences

# Exact p-value

wilcox.test(x = IOPS$d,
alternative = c("two.sided"), mu = 0,
exact = TRUE, correct = TRUE)

## Warning in wilcox.test.default(x = IOP$d, alternative = c("two.sided"),
## cannot compute exact p-value with ties

## Warning in wilcox.test.default(x = IOPS$d, alternative = c("two.sided"),
## cannot compute exact p-value with zeroes

##

## Wilcoxon signed rank test with continuity correction
##

## data: IOPSd

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location is not equal to 0 )
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(Wilcoxon) Signed-rank test in R: Glaucoma example

"Attempt" with approximate p-value & specifying columns for paired data

# Normal approximation with continuity correction
wilcox.test(x = IOP$Synth, y = IOP$Adren, paired = TRUE,
alternative = c("two.sided"), mu = 0,
exact = FALSE, correct = TRUE)

#H

H Wilcoxon signed rank test with continuity correction

##

## data: IOP$Synth and IOPSAdren

## V = 19.5, p-value = 0.07314

## alternative hypothesis: true location shift is not equal to 0

No more warnings!! However,... should we be using the normal approximation here?
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Conclusion

Recall the hypotheses to the (Wilcoxon) Signed-rank test:

H, : the population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is symmetric around (i, = 0

H, : the population difference in reduction of intraocular pressure in treatment with
adrenaline vs. new synthetic drug is not symmetric around [, = 0

e Significance level: o = 0.05
e p-value = 0.07314

Conclusion:

There is insufficient evidence the differences in reduction in intraocular pressure differs
between the synthetic drug and adrenaline are symmetric about O (2-sided Wilcoxon signed
rank test p-value = 0.07314)

However,...
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Wilcoxon rank-sum test

For two independent samples
a.k.a Mann-Whitney U test




Wilcoxon rank-sum test

The nonparametric alternative to the two-sample t-test

o used to analyze two samples selected from separate (independent) populations
Also called the Mann-Whitney U test.

Unlike the signed-rank test, there is Nno need to assume symmetry
e Necessary condition is that the two populations being compared

o have the same shape (both right skewed, both left skewed, both symmmetric, etc.),
o so any noted difference is due to a shift in the median

e Since they have the same shape, when summarizing the test, we can describe the results
INn terms of a difference in medians.

Hypotheses:

H, : the two populations have the same median
H, : the two populations do NOT have the same median
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Example

Dr. Priya Chaudhary (OHSU) examined the evoked membrane current of dental sensory

neurons (in rats) under control conditions and a mixture of capsaicin plus capsazepine (CPZ).

J. Dental Research} 80:1518--23, 2001.

CPZdata <- tibble(

control
cap_CPZz

)

= ¢c(3024, 2164, 864, 780, 125, 110),
= c(426, 232, 130, 94, 75, 55)

CPZdata %>%

get_summary_stats(type = "median") %>%

gt()

variable n median

control 6

cap_CPZ 6

822
112

CPZdata %>% gt()

control cap_CPZ

3024
2164
864
780
125
110

426
232
130
94
75
55
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Visualize the data

Do the independent samples have the same distribution?

Control group Cap + CPZ group
+« 1.00 +« 1.00
c 0. c 0.
31 i
30318 : = © 000 000 O = . —8
0 1000 2000 3000 100 200 300 400
control cap CPZ
0.4 0.4
0.2 1 0.2 1
009 — 0049 — — .
-0.2 1 -0.2 -
'04 T T T I '04 T T T T
0 1000 2000 3000 100 200 300 400
control cap CPZ
Zgeur—  —— 2 004 ==——=c==——1°t
e-04 - - i
T 1e-04 S 0:007 -
ﬁ DE+OD T | T T ﬁ = T T T I
0 1000 2000 3000 100 200 300 400
control cap CPZ
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Calculating ranks and test statistic W

1. Combine the two samples together
(keep track of which observations came
from each sample).

2. Rank the full set of N = nqy + no
observations.

o If ties exist, assign average ranks to
the tied values (as with the signed-
rank test).

3.Sum the ranks corresponding to those
observations from the smaller sample.

o This is a time-saving step; you could
also have used the larger sample.

o Call thissum W.

Wepz=1+2+34+6+7+8=27
Weontrol =4 +5+9-+10+ 11+ 12 =51

Group Current Rank

cap_CPZ 55 1
cap_CPZ 75 2
cap_CPZ 94 3
control 110 4
control 125 5
cap_CPZ 130 6
cap_CPZ 232 7
cap_CPZ 426 8
control 780 9
control 864 10
control 2164 11

control 3024 12

In our example, both groups have equal n;

choose either for computing W. 35/53



Exact p-value approach (fyi)

e If n1, ny are both less than 10, then use an exact test,

o otherwise use the large-sample normal approximation.
o However, exact method can only be done if no ties are present

e p-value is the probability of getting a rank sum W as extreme or more extreme than the
observed one.

o Multiply the 1-tail probability by 2 for the 2-tailed probability
p —value =2 - P(Wgpy < 27)

e To calculate P(Wepz < 27),

o we need to enumerate all possible sets ranks for the sample size,
o calculate the sum of ranks for each set of possible ranks,
o and then the probability for each sum (assuming each set of ranks is equally likely).

o We will not be calculating the p-value "by hand." We will be using R for this.
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Normal approximation approach (fyi)

If the null hypothesis is true, then the mean
of the sum of the ranks from the smaller-

sized group will be

ng - (ng +mn;+1)
Hw = 9 )

with a standard deviation of

\/ns-nz-(ns+nz+1)
ow = :

12

Provided both groups are large ( > 10),

W —
Z = allN Normal(0,1)
ow

Example:
We have W = 27 and n; = n, = 6:

6-(6+6+1)
Hw = 5

6-6-(6+6+1
oW = \/ ( 1; ) _ V39 = 6.2450
il 1.921538
A~ = —1.
6.2450

= 39

The two-sided p-value is

p=2-P(Z < —1.921538) = 0.05466394
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R code for creating ranks on previous slide

CP

#H#
##
##
##
##
##
##
#H#
#H#

CPZdata_long <- CPZdata %>%
pivot_longer(cols =

Zdata

# A tibble: 6 x 2

control cap_CPZ
<dbl> <dbl>

1 3024 426
2 2164 232
3 864 130
4 780 94
5 125 75
6 110 55

mutate(Rank = 1:12)

CPzZdata_long %>%

c(control,cap_CPZz),
names_to = "Group",
values_to = "Current") %>%
arrange(Current) %>%

Current Rank

gt()

Group

cap_CPZ 55
cap_CPZ 75
cap_CPZ 94
control 110
control 125
cap_CPZ 130
cap_CPZ 232
cap_CPZ 426
control 780
control 864
control 2164
control 3024

1

o o B~ W

11

12
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Wilcoxon rank-sum test in R: with wide data

glimpse(CPZdata)

## Rows: 6

## Columns: 2

## S control <dbl> 3024, 2164, 864, 780, 125, 110
## & cap_CPZ <dbl> 426, 232, 130, 94, 75, 55

Exact p-value

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control,

alternative = c("two.sided"), mu = 0,
exact = TRUE)

##

## Wilcoxon rank sum exact test

H#

## data: CPZdata$cap_CPZ and CPZdataS$control
## W = 6, p-value = 0.06494

## alternative hypothesis: true location shift is not equal to 0

39 /53



Wilcoxon rank-sum test in R: with wide data

Normal approximation p-value without CC

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control,
alternative = c("two.sided"), mu = 0,

exact = FALSE, correct = FALSE) %>% tidy() %>% gt()

statistic p.value method alternative

6 0.05466394 W.ilcoxon rank sum test two.sided

Normal approximation p-value with CC

wilcox.test(x = CPZdata$cap_CPZ, y = CPZdata$control,
alternative = c("two.sided"), mu = 0,
exact = FALSE, correct = TRUE) %>% tidy() %>% gt()

statistic p.value method alternative

6 0.06555216 Wilcoxon rank sum test with continuity correction two.sided
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Wilcoxon rank-sum test in R: with long data

Make data long (if it's not already long):

CPZdata_long <- CPZdata %>%
c(control,cap_CPZ2),
names_to = "Group",
values_to = "Current")

pivot_longer(cols =

head (CPZdata_long)

## # A tibble: 6 x 2
## Group Current

## <chr> <db'l>
## 1 control 3024
## 2 cap_CPZ 426
## 3 control 2164
## 4 cap_CPZ 232
## 5 control 864
## 6 cap_CPZ 130

Exact p-value

wilcox.test(Current ~ Group,

tidy ()

statistic

data = CPZdata_long,
alternative = c("two.sided"),
mu = 0,

exact = TRUE) %>%

%>% gt ()

p.value method alternative

6 0.06493506 Wilcoxon rank sum exact test two.sided
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Conclusion

Recall the hypotheses to the (Wilcoxon) Signed-rank test:

Hj : the control and treated populations have the same median
H, : the control and treated populations do NOT have the same median

e Significance level: a = 0.05
e p-value = 0.06494%

Conclusion:

There is suggestive but inconclusive evidence that the evoked membrane current of dental
sensory neurons (in rats) differs between the control group and the group exposed to a
mMixture of capsaicin plus capsazepine (2-sided Wilcoxon rank-sum test p-value = 0.06494).
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Kruskal-Wallis test

Nonparametric ANOVA test




Kruskal-Wallis test: nonparametric ANOVA test

e Recall that an ANOVA tests means from more than 2 groups

e Conditions for ANOVA include

o Sample sizes in each group group are large (each n > 30),
= OR the data are relatively normally distributed in each group
o Variability is "similar" in all group groups

e |f these conditions are in doubt, or if the response is ordinal, then the Kruskal-Wallis test is
an alternative.

Hy : pop median, = pop median, =...= pop median,
vs. H, : At least one pair pop median; # pop median; for ¢ # j

o K-W test is an extension of the (Wilcoxon) rank-sum test to more than 2 groups
o With k = 2 groups, the K-W test is the same as the rank-sum test
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K-W test statistic: H (fyi)

12 k. R?
H = © —3(N +1
N(N—I—l)zni 3( i )

1=1

e kisthe number of groups,

e n; isthe number of observations in group 2

e N =n1+ ...+ ngisthe total number of observations across all groups,
e R;isthe sum of ranks for group ¢

The test statistic H has a Chi-squared distribution with k — 1 degrees of freedom:
2
H ~ x4

Ranks are calculated similarly to the (Wilcoxon) rank-sum test.
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Ranks for the K-W test

1. Combine the k samples together (keep track of which observations came from each

sample).
2. Rank the full set of N = ny + ... 4+ ng observations.
o If ties exist, assign average ranks to the tied values (as with the signed-rank test).

3. Then sum the ranks within each of the k groups
o Label the sums of the ranks for each group as Ry, ...+ Ry.

If Hy is true, we expect the populations to have the same medians, and thus the ranks to be
similar as well.
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Example: Ozone levels by month (1/2)

e airquality dataincluded in base R - no need to load it

e Daily air quality measurements in New York, May to September 1973.

e Question: do ozone levels differ by month?

glimpse(airquality)

## Rows: 153

## Columns: 6

## $ Ozone  <int> 41, 36, 12, 18, NA, 28, 23, 19, 8, NA, 7, 16, 11, 14, 18, 14, ..
## $ Solar.R <int> 190, 118, 149, 313, NA, NA, 299, 99, 19, 194, NA, 256, 290, 27..
## $ Wind <dbl> 7.4, 8.0, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6, 6.9, 9..
## $ Temp <int> 67, 72, 74, 62, 56, 66, 65, 59, 61, 69, 74, 69, 66, 68, 58, 64..
## ¢ Month  <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,..
## $ Day <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,..
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Example: Ozone levels by month (2/2)

Oz_mnth <- airquality %>%

group_by (Month)

get_summary_stats(0Ozone,
IImeanll ,

show = c("n",
Oz_mnth %>% gt()

Month variable
5 Ozone
6 Ozone
7 Ozone
8 Ozone

9 Ozone

26>2%

n mean median

26 23.615
9 29.444
26 59.115
26 59.962
29 31.448

18
48]
60
2
23

"median",

sd
22.224
18.208
31.636
39.681

24.142

max (0z_mnth$Ssd) / min(0z_mnth$sd)

## [1] 2.179317

”Sd”))

ggplot(airquality,
aes(x = Ozone, y = factor(Month))) +
geom_boxplot()

w
1
|
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L ]
-
-

o
|
.

factor(Month)
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(93]
1
|
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1 |
|
.
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Ozone
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Example: calculate ranks (fyi) (1/2)

ranks_Oz_mnth <- airquality %>%

select(0Ozone, Month)

summary (ranks_0z_mnth)

H# Ozone Month
## Min. : 1.00 Min. :5
## 1st Qu.: 18.00 1st Qu.:6
## Median : 31.50 Median :7
## Mean : 42.13 Mean :6
## 3rd Qu.: 63.25 3rd Qu.:8
## Max. :168.00 Max. :9

## NA's :37

ranks_Oz_mnth <- ranks_0z_mnth
drop_na(0Ozone) %>%
arrange(0zone) %>%
mutate(Rank = 1:nrow(.))

.000
.000
.000
.993
.000
.000

26>%

Ranks below do not take into account ties!!

ranks_0z_mnth

##
#H#
#H#
##
##
##
##
##
##
#H#
#H#
##
##
##
##
##
HH

O oo~NOYOUhdwWNE

Ozone Month Rank

1

O O W o0 ~N~N~NO D

— e e e
S S

5

D 01 01 U1 01 O 0 0 U1 © N 01 U1 Ul

O oo Nl DdWN K

el el
D UTA WN RO
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Example: calculate ranks (fyi) (2/2)

Ranks below do not take into account ties!!

ranks_0z_mnth

##
##
#H#
#H#
##
##
##
##
##
##
#H#
#H#
##
##
##
##
HH

O oo~NO”OUbdwWNE

Ozone Month Rank

1

O O W oo ~N~N~NO D

— R R
VN HKHKFOG

5

D 01 01 U1 U1 O 0 0 U1 © N 01 U1 Ul

O oo Nl WDN K

i el el
D UTA WN RO

Sum of ranks for each group: (not taking

INnto account tiesl!!)

ranks_Oz_mnth %>%

##
##
#H#
#H#
##
##
##
##

group_by (Month
summarise(sumRank = sum(Rank))

# A tibble: 5 x 2
Month sumRank

aua b~ wWNNBHE

<int>

5
6
-
8
9

<int>
939
434
2023
1956
1434

26>2%
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K-W test in R

kruskal.test(Ozone ~ Month, data = airquality)

##

#4 Kruskal-Wallis rank sum test

H#

## data: Ozone by Month

## Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06

kruskal.test(0zone ~ Month, data = airquality) %>% tidy() %>% gt()

statistic p.value parameter method

29.26658 6.900714e-06 4 Kruskal-Wallis rank sum test

There is sufficient evidence that the median ozone levels are different in at least two months
from May - September, 1973 in New York City (p < 0.0071; Kruskal-Wallis test).

e (fyi) Since the K-W test is significant, follow-up with pairwise (Wilcoxon) rank-sum tests
using a multiple comparison procedure to identify which months have different medians; /53



Permutation tests & bootstrapping

another option to consider




Permutation tests & bootstrapping

e |INn some cases we saw that the conditions failed or the sample size was too small for a
normal approximation and there were ties in ranks preventing us from using an exact

method.

e Another nonparametric option to consider is a permutation test or bootstrapping.

e |fyou're interested in learning more about this approach, check out the ModernDive
Statistical Inference via Data Science book by Chester Ismay and Albert Kim.

o Ch7:Sampling

o Ch 8: Bootstrapping and Confidence Intervals
o Ch 9: Hypothesis Testing
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https://moderndive.com/index.html
https://moderndive.com/index.html
https://moderndive.com/7-sampling.html
https://moderndive.com/8-confidence-intervals.html
https://moderndive.com/9-hypothesis-testing.html

