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Goals for today (Sections 6.3-64)

Simple Linear Regression Part 2

e Review of
m pest-fit line (aka regression line or least-squares line)
m residuals
= population model
e LINE conditions and how to assess them
= New diagnostic tools:
o Normal QQ plots of residuals
o Residual plots
e Coefficient of determination (R?)
e Regression inference
1. Inference for population slope £
m Cl & hypothesis test

2. Cl for mean response fiy |,
3. Prediction interval for predicting individual observations

m Confidence bands vs. predictions bands



Life expectancy vs. female adult literacy rate
https://www.gapminder.org/tools/#$model$markers$bubble$encoding$x$data$concep

type=bubbles&url=v1
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Dataset description

e Datafile: lLifeexp_femlit_water_2011.csv
e Data were downloaded from https://www.gapminder.org/data/
e 2011 is the most recent year with the most complete data

o Life expectancy = the average number of years a newborn child would live if current
mortality patterns were to stay the same. Source:
https://www.gapminder.org/data/documentation/gd004/

e Adult literacy rate is the percentage of people ages 15 and above who can, with
understanding, read and write a short, simple statement on their everyday life.
Source: http://data.uis.unesco.org/

e At least basic water source (%) = the percentage of people using at least basic
water services. This indicator encompasses both people using basic water services as
well as those using safely managed water services. Basic drinking water services is
defined as drinking water from an improved source, provided collection time is not
more than 30 minutes for a round trip. Improved water sources include piped water,
boreholes or tubewells, protect dug wells, protected springs, and packaged or
delivered water.



Get to know the data

Load data

gapm original <- read csv(here::here("data", "lifeexp femlit water 201l.csv"))

Glimpse of the data

glimpse(gapm original)

Rows: 194

Columns: 5

$ country <chr> "Afghanistan", "Albania", "Algeria", "Andor..
$ life expectancy_ years 2011 <dbl> 56.7, 76.7, 76.7, 82.6, 60.9, 76.9, 76.0, 7..
$ female literacy rate 2011 <dbl> 13.0, 95.7, NA, NA, 58.6, 99.4, 97.9, 99.5,..
$ water basic_source 2011 <dbl> 52.6, 88.1, 92.6, 100.0, 40.3, 97.0, 99.5, ..
$ water 2011 quart <chr> "Q1", "Q2", "Q2", "o4", "Q1", "Q3", "o04", "..

Note the missing values for our variables of interest

oL
\Y
o

gapm _original %>% select(life expectancy years 2011, female literacy rate 2011)
get summary stats()

# A tibble: 2 x 13

variable n min max median gl q3 iqgr mad mean sd se

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 life expec.. 187 47.5 82.9 72.7 64.3 76.9 12.6 9.04 70.7 8.44 0.617
2 female 1lit.. 80 13 99.8 91.6 71.0 98.0 27.0 11.4 81.7 22.0 2.45
# i 1 more variable: ci <dbl>



Remove missing values

Remove rows with missing data for life expectancy and female literacy rate

gapm <- gapm original %>%
drop na(life expectancy years 2011, female literacy rate 2011)

glimpse(gapm)
Rows: 80
Columns: 5
$ country <chr> "Afghanistan", "Albania", "Angola", "Antigu..
$ life expectancy_ years 2011 <dbl> 56.7, 76.7, 60.9, 76.9, 76.0, 73.8, 71.0, 7..
$ female literacy rate 2011 <dbl> 13.0, 95.7, 58.6, 99.4, 97.9, 99.5, 53.4, 9.
$ water basic_source 2011 <dbl> 52.6, 88.1, 40.3, 97.0, 99.5, 97.8, 96.7, 9..
$ water 2011 quart <chr> "Q1", "Q2", "Q1", "Q3", "Q4", "Q3", "Q3",

No missing values now for our variables of interest

oo
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gapm %>% select(life expectancy years 2011, female literacy rate 2011)
get summary stats()

# A tibble: 2 x 13

variable n min max median ql a3 igr mad mean sd se

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 life expec.. 80 48 81.8 72.4 65.9 75.8 9.95 6.30 69.9 7.95 0.889
2 female 1lit.. 80 13 99.8 91.6 71.0 98.0 27.0 11.4 81.7 22.0 2.45

# i 1 more variable: ci <dbl>

@ Important

e Removing the rows with missing data was not needed to run the regression model.

e | did this step since later we will be calculating the standard deviations of the explanatory and response variables for just
the values included in the regression model. It'll be easier to do this if we remove the missing values now.




Regression line = best-fit line

'!:/ - bO L bl . Life expectancy vs. female literacy rate
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by is the intercept

by is the slope of the ling, i.e., the increase in y for . ,
every increase of one (unitincrease) in . 2 50 75 160

female literacy rate

m slope = rise over run

Intercept
= The expected outcome for the y-variable when the x-variable is O.

Slope

m For every increase of 1 unit in the xz-variable, there is an expected increase of, on
average, b; units in the y-variable.

= We only say that there is an expected increase and not necessarily a causal
increase.



Regressionin R: tm( ), summary (), & tidy()

modell <- 1lm(life expectancy years 2011 ~ female literacy rate 2011,
data = gapm)
summary (modell)

Call:
Im(formula = life expectancy years 2011 ~ female literacy rate 2011,
data = gapm)

Residuals:
Min 10 Median 30 Max
-22.299 -2.670 1.145 4.114 9.498

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.92790 2.66041 19.143 < 2e-16 ***
female literacy rate 2011 0.23220 0.03148 7.377 1.5e-10 #**=*
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.142 on 78 degrees of freedom
Multiple R-squared: 0.4109, Adjusted R-squared: 0.4034
F-statistic: 54.41 on 1 and 78 DF, p-value: 1.501le-10

tidy(modell) %>% gt()

term estimate std.error statistic p.value
(Intercept) 50.9278981 2.66040695 19.142898 3.325312e-31

female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10

Regression equation for our model:

—_—

life expectancy = 50.9 4+ 0.232 - female literacy rate



Residuals

e Observed values y;
m the values in the dataset
e Fitted values yj;

= the values that fall on the
best-fit line for a specific x;

e Residualse; = y; — ¥;

m the differences between the
observed and fitted values

80+
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Regression line with residuals
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The (population) regresison model

e The (population) regression model is
denoted by

Y=00+81-X+e

By and (1 are unknown population
parameters

€ (epsilon) is the error about the line

m |t is assumed to be a random variable:

o € ~ N(0,0?)

2

o variance o“ is constant

|
3004 !

https://bookdown.org/roback/bookdown-bysh/ch-
MLRreview.html#ordinary-least-squares-ols-assumptions

The line is the average (expected) value of Y given a value of x: E(Y |z).

e The point estimates for By and 3 based on a sample are denoted by

by, b1, 82

residuals

= Note: also common notation is By, 81, 0>

11



What are the LINE conditions?

For “good” model fit and to be able to make inferences and predictions based on our
models, 4 conditions need to be satisfied.

Briefly:

e L inearity of relationship between variables

e | ndependence of the Y values

e N ormality of the residuals

e E quality of variance of the residuals (homoscedasticity)

More in depth:

e L:thereis alinear relationship between the mean response (Y) and the explanatory
variable (X),

e |:the errors are independent—there’'s no connection between how far any two
points lie from the regression line,

e N :the responses are normally distributed at each level of X, and

e E:thevariance or, equivalently, the standard deviation of the responses is equal for
all levels of X.

12



L: Linearity of relationship between variables

Is the association between the variables linear?

e Diagnostic tools:
m Scatterplot
m Residual plot (see later section for E : Equality of variance of the residuals)

Life expectancy vs. female literacy rate in 2011
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: Independence of the residuals (Y values)

Are the data points independent of each other?

e Examples of when they are not independent, include

m repeated measures (such as baseline, 3 months, 6 months)
= data from clusters, such as different hospitals or families

This condition is checked by reviewing the study design and not by inspecting the
data

How to analyze data using regression models when the Y -values are not
independent is covered in BSTA 519 (Longitudinal data)

14



N: Normality of the residuals

e Extract residuals from regression model in R
e Diagnostic tools:

= Distribution plots of residuals
= QQ plots

16



Normality of the residuals

N

e The responses Y are normally distributed at each level of x

X

https://bookdown.org/roback/bookdown-bysh/ch-MLRreview.html#ordinary-least-squares-ols-assumptions

17



Extract model’s residuals in R

e First extract the residuals’ values from the model output using the augment ()
function from the broom package.

e Get a tibble with the orginal data, as well as the residuals and some other important
values.

modell <- Im(life expectancy years 2011 ~ female literacy rate 2011,
data = gapm)
augl <- augment (modell)

glimpse(augl)

Rows: 80

Columns: 8

$ life expectancy_ years 2011 <dbl> 56.7, 76.7, 60.9, 76.9, 76.0, 73.8, 71.0, 7..
$ female literacy rate 2011 <dbl> 13.0, 95.7, 58.6, 99.4, 97.9, 99.5, 53.4, 9.
$ .fitted <dbl> 53.94643, 73.14897, 64.53453, 74.00809, 73...
$ .resid <dbl> 2.7535654, 3.5510294, -3.6345319, 2.8919074..
$ .hat <dbl> 0.13628996, 0.01768176, 0.02645854, 0.02077..
$ .sigma <dbl> 6.172684, 6.168414, 6.167643, 6.172935, 6.1..
$ .cooksd <dbl> 1.835891e-02, 3.062372e-03, 4.887448e-03, 2..
$ .std.resid <dbl> 0.48238134, 0.58332052, -0.59972251, 0.4757..

O = O O



Check normality with “usual” distribution plots

Note that below | save each figure, and then combine them together in one row of
output using grid.arrange() from the gridExtra package.

histl <- ggplot(augl, aes(x = .resid)) +

geom histogram()

densityl <- ggplot(augl, aes(x = .resid)) +

geom density()

boxl <- ggplot(augl, aes(x
geom_boxplot ()

library(gridExtra) # NEW!!!

grid.arrange(histl, densityl, boxl, nrow

20 10 0 10
.resid

= .resid)) +

1)

0.08 -

0.06 -

0.04 -

density

0.02 -

0.00

20 -10
-resid

10

0.4 4

0.2 1

0.0— ° LA *

-0.2 -

-0.4 -

20 -0 0 10
.resid
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Normal QQ plots (QQ = quantile-quantile)

e |t can be tricky to eyeball with a histogram or density plot whether the residuals are
normal or not

e QQ plots are often used to help with this

e Vertical axis: data quantiles

= data points are sorted in order and 10 -

= assigned quantiles based on how many data
points there are 0-

e Horizontal axis: theoretical quantiles >

= mean and standard deviation (SD) calculated -10 7
from the data points

= theoretical quantiles are calculated for each 207
point, assuming the data are modeled by a P
normal distribution with the mean and SD of X
the data

e Data are approximately normal if points fall on a line.

See more info at https://data.library.virginia.edu/understanding-QQ-plots/

20



Examples of Normal QQ plots (1/5)

e Data:

m Body measurements from 507 physically active individuals
= in their 20's or early 30's

= within normal weight range.

Wrist Diameters

Histogram of wristd Normal Q-Q Plot
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Examples of Normal QQ plots (2/5)

Skewed right distribution

Weights

Histogram of Data

Normal G- Plot
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Examples of Normal QQ plots (3/5)

Long tails in distribution

Biiliac diameter

Ciensity

015

010

005

0.00

Histogram of Data

™~

\

ntiles (n = 507 )

Data Qua

Normal Q-Q Plot

0

25

Data

30

Thearetical Quantiles

23



Examples of Normal QQ plots (4/5)

Bimodal distribution

Forearm girth

Normal G-Q: Plot
Histogram of Data

015
|
4
|

=3507)

0.10
1

\

Density
Data Quantiles (n

0.05
1
\\
[~

|
B

Theoretical Quantiles



Examples of

Forearm by gender

Histogram of mforearmg
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QQ plot of residuals of mode L1

0.4
9 0.2 1
c
> 6- - e (X ° —
8 0.0
37 -0.2 1
0- II . T || T _04 T T T T
-20 -10 0 10 -20 -10 0 10
.resid .resid .resid
ggplot(augl, aes(sample = .resid)) +
stat qgq() + # points
stat ggq line() # line
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Compare to randomly generated Normal QQ plots

How “good” we can expect a QQ plot to look depends on the sample size.

e The QQ plots on the next slides are randomly generated
= using random samples from actual standard normal distributions IV (0, 1).
e Thus, all the points in the QQ plots should theoretically fall in a line

e However, there is sampling variability...

27



Randomly generated Normal QQ plots: n=100

e Note that stat_qgq_Lline() doesn't work with randomly generated samples, and
thus the code below manually creates the line that the points should be on (which is
Yy =  in this case.)

samplesize <- 100 grid.arrange(rand gql, rand qq2,

rand gq3, rand gg4, ncol =2)
rand gql <- ggplot() +

stat gg(aes(sample = rnorm(samplesize))) +

# line y=x
geom abline(intercept = 0, slope = 1,
color = "blue")
Qo
o
rand_qgq2 <- ggplot() + g
stat gg(aes(sample = rnorm(samplesize))) + 0
geom abline(intercept = 0, slope = 1,
color = "blue")
2 -1 0 1 2
rand_qq3 <- ggplot() + theoretical
stat gg(aes(sample = rnorm(samplesize))) +
geom abline(intercept = 0, slope = 1, 3
color = "blue")
2' (1
rand gg4 <- ggplot() + %i 1-
stat gg(aes(sample = rnorm(samplesize))) + E o-
. q ®
geom abline(intercept = 0, slope = 1, 7] 1
color = "blue") i
2
2 -1 0 1 2 2 -1 0 1 2
theoretical theoretical
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Examples of simulated Normal QQ plots. n=10

With fewer data points,

e simulated QQ plots are more likely to look “less normal”

e even though the data points were sampled from normal distributions.

samplesize <- 10 # onl
rand gql <- ggplot() +
stat gg(aes(sample =

# line y=x
geom abline(intercept
color = "
rand _gqg2 <- ggplot() +
stat gg(aes(sample =
geom abline(intercept
color = "

rand gq3 <- ggplot() +
stat qgg(aes(sample =
geom abline(intercept

color =

rand gg4 <- ggplot() +
stat gg(aes(sample =
geom abline(intercept

color =

y change made to code!

rnorm(samplesize))) +

= 0, slope = 1,
blue")
o
o
€
©
rnorm(samplesize))) + @ -
= 0, slope =1,
blue")
rnorm(samplesize))) +
= 0, slope = 1,
"blue")
Q@
. Q
rnorm(samplesize))) + e
©
= 0, slope =1, n

"blue")

grid.arrange(rand gql, rand qq2,
rand qq3, rand gg4, ncol =2)

theoretical theoretical
0.5
0.0 o 27 T
- g
-0.5 4 = .
0 _1-
-1.0 1
1.5- 1]
T T T ‘2 T T T
-1 0 1 -1 0 1
theoretical theoretical
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Examples of simulated Normal QQ plots. n=1,000

With more data points,

e simulated QQ plots are more likely to look “more normal”

samplesize <- 1000 # only change made to code! grid.arrange(rand gql, rand qgq2,

rand gg3, rand gg4, ncol =2)
rand gql <- ggplot() +

stat gg(aes(sample = rnorm(samplesize))) +

# line y=x *
geom abline(intercept = 0, slope = 1, 2 - 2
color = "blue")
Q Q
Q. 0- [oN 0 -
rand gg2 <- ggplot() + % %
stat gg(aes(sample = rnorm(samplesize))) + n n
geom abline(intercept = 0, slope = 1, 21 27 P
color = "blue") { ..
2 0 2 2 0 2
rand_gq3 <- ggplot() + , theoretical theoretical
stat gg(aes(sample = rnorm(samplesize))) +
geom abline(intercept = 0, slope = 1, . .
color = "blue")
2- %7
rand gqq4 <- ggplot() + %i %i
stat gg(aes(sample = rnorm(samplesize))) + E 0- e 0+
geom abline(intercept = 0, slope = 1, 8 8
color = "blue") 2 2
3 6 2 3 6 2
theoretical theoretical
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Back to our example

Residuals from Life Expectancy
vs. Female Literacy Rate
Regression
ggplot(augl,
aes(sample = .resid)) +

stat gg() +
stat gg line()

Simulated QQ plot of Normal Residuals with n

# number of observations
# in fitted model
nobs (modell)

[1] 80

ggplot() +
stat_qgqg(aes(

sample = rnorm(80))) +
geom abline(

intercept = 0, slope = 1,

color = "blue")

10

-10 4

-20 4

80

-2 -1 0 1 2
theoretical







-quality of variance of the residuals

e Homoscedasticity

e Diagnostic tool: residual plot

https://bookdown.org/roback/bookdown-bysh/ch-MLRreview.html#ordinary-least-squares-ols-assumptions
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Residual plot

e x = explanatory variable from regression model

m (or the fitted values for a multiple regression)

e y =residuals from regression model

names (augl)

[1] "life expectancy years 2011"
"female literacy rate 2011"

[3] ".fitted" ".resid"
[5] ".hat" ".sigma"
[7] ".cooksd" ".std.resid"
ggplot(augl,
aes(x = female literacy rate 2011,
y = .resid)) +
geom point() +
geom abline(
intercept = 0,
slope = 0,
color = "orange") +
labs(title = "Residual plot")

Residual plot
10 4
1 ) o::.“
0 - r . ‘E;
§e] . N . ?
-(7) ¢ ° . )
o . e
" 10 1 * .
_2()_
25 50 75 100

female_literacy rate 2011
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E: Equality of variance of the residuals (Homoscedasticity)

e The variance or, equivalently, the standard deviation of the responses is equal for

all values of

e This is called homoskedasticity (top row)

X.

e If there is heteroskedasticity (bottom row), then the assumption is not met.

Resicual

la}

Icl

-

Homoskedastic

-2

-y =

-

T

Heteroskedastic

Residuals are randomly scattered—good!

Curved pattern—means the relationship
you are looking at is not linear.

A change in variability across plot is a
warning sign. You need to find out why it
is, and remember that predictions made
in areas of larger variability will not be as
good.
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R? = Coefficient of determination

Another way to assess model fit



R? = Coefficient of determination (1/2)

e Recall that the correlation coefficient » measures the strength of the linear
relationship between two numerical variables

e R?is usually used to measure the strength of a linear fit

= For a simple linear regression model (one numerical predictor), R? is just the
square of the correlation coefficient

e In general, R?is the proportion of the variability of the dependent variable that is
explained by the independent variable(s)

R _ variance of predicted y-values a > i1 (@i —9)° i 332/ B S?esiduals
variance of observed y-values S (v — 9)? 57
Rz —1_ Sl?esiduals
— 2

2
85 : : y . " .l
where —1’92‘;‘1&15 is the proportion of “unexplained” variability in the y values,
)

2
andthus R> =1 — Se;%ls is the proportion of “explained” variability in the y values
Y
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R? = Coefficient of determination (2/2)

e Recall, -1 <r<1
e Thus,0 < R?> < 1

e In practice, we want “high” R? values, i.e. R? as close to 1 as possible.

Calculating R? in R using glance () from the broom package:

glance(modell)
# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.411 0.403 6.14 54.4 1.50e-10 1 -258. 521. 529.

# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(modell)S$r.squared

[1] 0.4109366

Warning

e A model can have a high R? value when there is a curved pattern.

e Always first check whether a linear model is reasonable or not.

39



R? in summary () R output

summary (modell)

Call:
Im(formula = life expectancy years 2011 ~ female literacy rate 2011,
data = gapm)

Residuals:
Min 10 Median 30 Max
-22.299 -2.670 1.145 4.114 9.498

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.92790 2.66041 19.143 < 2e-16 ***
female literacy rate 2011 0.23220 0.03148 7.377 1.5e-10 ***
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.142 on 78 degrees of freedom
Multiple R-squared: 0.4109, Adjusted R-squared: 0.4034
F-statistic: 54.41 on 1 and 78 DF, p-value: 1.501le-10

Compare to the square of the correlation coefficient 7:

r <- cor(x = gapmslife expectancy years 2011,
y = gapm$female literacy rate 2011,
use = "complete.obs")

r

[1] 0.6410434
r*2

[1] 0.4109366

40



Regression inference

1. Inference for population slope 5,

2. Cl for mean response fiy |,

3. Prediction interval for predicting individual observations

42



Inference for population slope 31

# Fit regression model:

modell <- 1lm(life expectancy years 2011 ~ female literacy rate 2011,
data = gapm)

# Get regression table:

tidy(modell, conf.int = TRUE) %>% gt() # conf.int = TRUE part is new!

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.9278981 2.66040695 19.142898 3.325312e-31 45.6314348 56.2243615
female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10 0.1695284 0.2948619

Yy =by +by-x

life expectancy =50.9 + 0.232 - female literacy rate

e What are Hy and H 4?

e How do we calculate the standard error, statistic, p-value, and CI?

Note

e We can also test & calculate CI for the population intercept
e This will be covered in BSTA 512




Inference for the population slope: Cl and hypothesis test

Population model
line + random “noise”

Y=0+b51-X+e¢
with e ~ N (0, o)
o is the variability (SD) of the residuals
Sample best-fit (least-squares) line:

@:bQ—Fbl-w

Note: Some sources use [ instead of b.

e Construct a 95% confidence interval for
the population slope 3

e Conduct the hypothesis test

H():,Bl:O
vs. Hy: 81 #0

Note: R reports p-values for 2-sided tests
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Cl for population slope 31

Recall the general Cl formula:

Point Estimate £+ t* - SEpgint Estimate

For the Cl of the coefficient by this translates to
by £t - SE,

where t* is the critical value from a t-distribution with df = n — 2.
How is SEy, calculated? See next slide.

tidy(modell, conf.int = TRUE)

# A tibble: 2 x 7

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 50.9 2.66 19.1 3.33e-31 45.6 56.2

2 female literacy rate.. 0.232 0.0315 7.38 1.50e-10 0.170 0.295



Standard error of fitted slope by

SEy, is the variability of the statistic by

SE Sresiduals
by —
s;vn —1
o sfesiduals is the sd of the e s isthe sample sd of the e n isthe sample size, or the
residuals explanatory variable x number of (complete) pairs
of points
glance(modell)
# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.411 0.403 6.14 54.4 1.50e-10 1 -258. 521. 529.

# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
# standard deviation of the residuals (Residual standard error in summary() output)
(s_resid <- glance(modell)S$sigma)
[1] 6.142157
# standard deviation of x's
(s_x <- sd(gapm$female literacy rate 2011))
[1] 21.95371
# number of pairs of complete observations
(n <- nobs(modell))

[1] 80

(se bl <- s resid/(s_x * sqrt(n-1))) # compare to SE in regression output

[1] 0.03147744
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Calculate Cl for population slope 54

b +t*.SE where t* is the t-distribution critical value
L b1 withdf =n — 2.
tidy(modell, conf.int = TRUE) %>% gt()
term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.9278981 2.66040695 19.142898 3.325312e-31 45.6314348 56.2243615

female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10 0.1695284 0.2948619

Save regression output for the row with the slope’s information:

modell bl <-tidy(modell) %>% filter(term == "female literacy rate 2011")
modell bl %>% gt()

term estimate std.error  statistic p.value

female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10

Save values needed for Cl: Compare Cl bounds below with the ones

T e T — in the regression table above.

SE bl <- modell bl$std.error (CI_LB <- bl - tstar*SE bl)

nobs (modell) # sample size n [1] 0.1695284

[1] 80 (CI_UB <- bl + tstar*SE_bl)

(tstar <- gt(.975, df = 80-2)) [1] 0.2948619

[1] 1.990847
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Hypothesis test for population slope 54

Hozﬂle
VS.HA:,Bl#O

tidy(modell, conf.int = TRUE) %>%
term estimate
(Intercept) 50.9278981

female_literacy_rate_2011 0.2321951

The test statistic for by is

- by — 1 h b1
SE,  SE,

when we assume Hy : 81 = O s true.

gt()

std.error statistic p.value conf.low conf.high
2.66040695 19.142898 3.325312e-31 45.6314348 56.2243615

0.03147744 7.376557 1.501286e-10 0.1695284 0.2948619

Calculate the test statistic using the values in the regression table:

# recall modell bl is regression table restricted to bl row

(TestStat <- modell bl$estimate /

[1] 7.376557

modell bl$std.error)

Compare this test statistic value to the one from the regression table above
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p-value for testing population slope 54

e As usual, the p-value is the probability of obtaining a test statistic just as extreme or
more extreme than the observed test statistic assuming the null hypothesis H is true.

e To calculate the p-value, we need to know the probability distribution of the test
statistic (the null distribution) assuming H is true.

e Statistical theory tells us that the test statistic ¢ can be modeled by a t-distribution
withdf =n — 2.

e Recall that this is a 2-sided test;

(pv = 2*pt(TestStat, df=80-2, lower.tail=F))

[1] 1.501286e-10

Compare the p-value to the one from the regression table below
tidy(modell, conf.int = TRUE) %>% gt() # compare p-value calculated above to p-value in t

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.9278981 2.66040695 19.142898 3.325312e-31 45.6314348 56.2243615
female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10 0.1695284 0.2948619
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Prediction (& inference)

1. Prediction for mean response

2. Prediction for new individual observation
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Prediction with regression line

term estimate std.error statistic p.value
(Intercept) 50.9278981 2.66040695 19.142898 3.325312e-31

female_literacy_rate_2011 0.2321951 0.03147744 7.376557 1.501286e-10

—

life expectancy = 50.9 + 0.232 - female literacy rate

What is the predicted life expectancy for a country with female literacy rate 60%?

—

life expectancy = 50.9 + 0.232 - 60 = 64.82

(y 60 <— 50.9 + 0.232%60)

[1] 64.82

e How do we interpret the predicted value?

e How variable is it?
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Prediction with regression line

Recall the population model: Life expectancy vs. female literacy rate
line + random “noise”
80 ° e,
Y=0+B81-X+e¢ e

with e ~ N (0, o)
o is the variability (SD) of the residuals

~
o
1

life expectancy
(o]
o

e When we take the expected value, at a
given value =¥, we have that the
predicted response is the average
expected response at *:

50

25 50 75 100
female literacy rate
——

e These are the points on the regression line.

e The mean responses has variability, and we can calculate a ClI for it, for every value of

x*.



Cl for mean response fiy |,

—_—

e SEE_— s calculated using
E[Y|z]
1 (x*—%)?
e E[Y|z*|is the predicted value at the specified point * of the explanatory variable
. sfesiduals is the sd of the residuals

e 1 is the sample size, or the number of (complete) pairs of points

e T is the sample mean of the explanatory variable x

S, is the sample sd of the explanatory variable x

Recall that ¢, is calculated using gt () and depends on the confidence level.
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Example: CI for mean response fiy |4+

Find the 95% CI for the mean life expectancy when the female literacy rate is 60.

[ ’w ] n—2 E[Y|z*]

1 (z*—1Z)2
64.8596 = 1.990847 - sreciduats | —— +

1 (60— 81.65375)2
_|_
80 (80 — 1)21.953712

64.8596 £ 1.990847 - 6.142157\/

64.8596 £ 1.990847 - 0.9675541
64.8596 4= 1.926252
(62.93335,66.78586)

(Y60 <- 50.9278981 + 0.2321951 * 60) (n <- nobs(modell))
[1] 64.8596 [1] 80

(tstar <- gt (.975, df = 78)) (mx <- mean(gapm$female literacy rate 2011))
[1] 1.990847 [1] 81.65375

(s_resid <- glance(modell)$sigma) (s_x <- sd(gapm$female literacy rate 2011))
[1] 6.142157 [1] 21.95371

(SE_Yx <- s resid *sqrt(l/n + (60 - mx)"2/((n-1)*s x"2)))
[1] 0.9675541
(MOE_Yx <- SE Yx*tstar) Y60 - MOE_Yx Y60 + MOE_Yx

[1] 1.926252 [1] 62.93335 [1] 66.78586
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Example: Using R for Cl for mean response (iy |+

Find the 95% ClI's for the mean life expectancy when the female literacy rate is 40,
60, and 80.
e Use the base R predict () function
e Requires specification of a newdata “value”
= The newdata value is *
= This has to be in the format of a data frame though

= with column name identical to the predictor variable in the model

newdata <- data.frame(female literacy rate 2011 = c(40, 60, 80))
newdata
female literacy rate 2011

1 40
60

N

3 80
predict (modell, Interpretation
newdata=newdata,
interval="confidence") We are 95% confident that the average
fi lwr upr 1 i 0
N S life expgctancy for a cpuntry with a 60%
2 64.85961 62.93335 66.78586 female literacy rate will be between 62.9

w

69.50351 68.13244 70.87457

and 66.8 years.
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Confidence bands for mean response fy |,

e Often we plot the CI for many values of X, creating confidence bands

e The confidence bands are what ggplot creates when we set se = TRUE within
geom_smooth

e For what values of x are the confidence bands (intervals) narrowest?

ggplot (gapm,
aes(x=female literacy rate 2011,
y=life expectancy years 2011)) +
geom point()+
geom_ smooth(method = 1lm, se=TRUE)+
ggtitle("Life expectancy vs. female literacy rate")

Life expectancy vs. female literacy rate

80 1

pectancy years 2011
-q
o

| 50 1

life ex

25 50 75 100
female_literacy rate 2011



Width of confidence bands for mean response iy |4

e For what values of £* are the confidence bands (intervals) narrowest? widest?

EY[z*] £t} 5 SE
[Yie*] £t; ;- SE
E[Y|z*] + ¢ . + )
* Sresiduals|
 * R 1)3:23
Life expectancy vs. female literacy rate
é 80 .
o
©
D 70-
>
=
8 60 -
(&)
S
X
CD| 50 1
2

25 50 75 100
female_literacy rate 2011
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Prediction interval for predicting individual observations

e We do not call this interval a Cl since Y is a random variable instead of a parameter

e The form is similar to a Cl though:

[\V)

z)

)E:

8N

ﬁE B NS e vicduals \/1 o _
n  (n—1

e Note that the only difference to the Cl for a mean value of y is the additional 1+
under the square root.
= Thus the width is wider!
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Example: Prediction interval

Find the 95% prediction interval for the life expectancy when the female literacy

rate is 60.

[1]

[1]

[1]

[1]

[1]

[\

17|\* t* 1+ : + (w* _ _)
75 ae > St —
n—2 resitduals -~ (n _ 1)8

1 (60— 81.65375)2
64.8596 = 1.990847 - 6.142157, |1+ — +

80 (80 — 1)21.95371°

2
%

(52.48072, 77.23849)

(Y60 <- 50.9278981 + 0.2321951 * 60) (n <- nobs (modell))
64.8596 [1] 80

(tstar <- gt(.975, df = 78)) (mx <- mean(gapm$female literacy rate 2011))
1.990847 [1] 81.65375

(s_resid <- glance(modell)S$sigma) (s_x <- sd(gapm$female literacy rate 2011))
6.142157 [1] 21.95371

(SE_Ypred <- s resid *sqgrt(l + 1/n + (60 - mx)"2/((n-1)*s _x"2)))
6.217898
(MOE_Ypred <- SE Ypred*tstar) Y60 - MOE Ypred Y60 + MOE Ypred

12.37888 [1] 52.48072 [1] 77.23849
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Example: Using R for prediction interval

Find the 95% prediction intervals for the life expectancy when the female literacy
rate is 40, 60, and 80.

newdata # previously defined for CI's

female literacy rate 2011
1 40
60
3 80

N

predict(modell,

newdata=newdata,
interval="prediction") # prediction instead of "confidence"
fit lwr upr
1 60.21570 47.63758 72.79382

2 64.85961 52.48072 77.23849
3 69.50351 57.19879 81.80823

Interpretation

We are 95% confident that a new selected country with a 60% female literacy rate will
have a life expectancy between 52.5 and 77.2 years.
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Prediction bands vs. confidence bands (1/2)

Create a scatterplot with the regression line, 95% confidence bands, and 95%
prediction bands.

e First create a data frame with the original data points (both x and y values), their
respective predicted values, andtheir respective prediction intervals
e Can do this with augment () from the broom package.

modell pred bands <- augment(modell, interval = "prediction")

# take a look at new object:
names (modell pred bands)

[1] "life expectancy years 2011" "female literacy rate 2011"

[3] ".fitted" ".lower"
[5] ".upper" ".resid"
[7] ".hat" ".sigma"
[9]1 ".cooksd" ".std.resid"

# glimpse of select variables of interest:
modell pred bands %>%
select(life expectancy years 2011, female literacy rate 2011,
.fitted: .upper) %>%
glimpse()
Rows: 80
Columns: 5

$ life expectancy years 2011 <dbl> 56.7, 76.7, 60.9, 76.9, 76.0, 73.8, 71.0, 7..
$ female literacy rate 2011 <dbl> 13.0, 95.7, 58.6, 99.4, 97.9, 99.5, 53.4, 9.

$ .fitted <dbl> 53.94643, 73.14897, 64.53453, 74.00809, 73...
$ .lower <dbl> 40.91166, 60.81324, 52.14572, 61.65365, 61...
$ .upper <dbl> 66.98121, 85.48470, 76.92334, 86.36253, 86...

62



Prediction bands vs. confidence bands (2/2)

names (modell pred bands)

[1] "life expectancy years 2011" "female literacy rate 2011"

[3] ".fitted" ".lower"
[5] ".upper" ".resid"
[7] ".hat" ".sigma"
[9] ".cooksd" ".std.resid"

ggplot (modell pred bands,
aes (x=female literacy rate 2011, y=life expectancy years 2011)) +
geom point() +
geom ribbon(aes(ymin = .lower, ymax = .upper), # prediction bands
alpha = 0.2, fill = "red") +
geom smooth(method=1lm) + # confidence bands
labs(title = "SLR with Confidence & Prediction Bands")

SLR with Confidence & Prediction Bands

s 2011
S

~
o
1

(o))
o
1

pectancy_year

&)
o
1

°

life ex
N
()

25 50 75 100
female_literacy rate 2011






Corrrelation doesn’t imply causation*!

e This might seem obvious, but make sure to not write your analysis results in a way
that implies causation if the study design doesn’'t warrant it (such as an observational
study).

e Beware of spurious correlations: http://www.tylervigen.com/spurious-correlations

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$2 billion 2000 degrees

0

o

3

$1.75 billion 2

[ =3
2 1500 degrees @
2 o)
= $1.5billion 3
[ ’a)
e ™
I (=3
g 1000 degrees 9
$1.25 billion o

o

o

1]

wv

$1 billion 500 degrees
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Computer science doctorates -¢- Arcade revenue

tylervigen.com

e xCaveat: there is a whole field of statistics/epidemiology on causal inference.
https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
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Continuous
Outcome

2 dependent / 2 independent
paired samples samples

(2-sample)
t-test

3+ independent
samples






