Day 12: Inference for a single proportion or difference of two (independent) proportions (Sections 8.1-8.2)

BSTA 511/611

Meike Niederhausen, PhD
OHSU-PSU School of Public Health

2023-11-08

MoRitz's tip of the day: code folding

- With code folding we can hide or show the code in the html output by clicking on the Code buttons in the html file.
- Note the </> Code button on the top right of the html output.

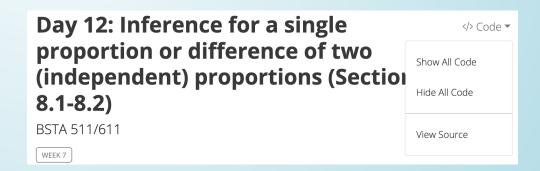
```
Code
2*pnorm(-0.3607455)

[1] 0.7182897

Code

[1] 0.7182897
```

```
2 title: "Day 12: Inference for a single proportion or difference of
     two (independent) proportions (Sections 8.1-8.2)"
 3 subtitle: "BSTA 511/611"
    author: "Meike Niederhausen, PhD"
    institute: "OHSU-PSU School of Public Health"
    date: "11/8/2023"
    categories: ["Week 7"]
    format:
 9
      html:
10
         link-external-newwindow: true
11
                              show code initially shown
         toc: true
12
                              true code initially hidden
         code-fold: show
13
         code-tools: true
                             Creates button at top right of html output that lets
14
        (source: repo)
                             the user select:
15
   execute:
                             Hide All Code, Show All Code, or View Source
16
       echo: true
17
       freeze: auto # re-render only when source changes
                             Can specify location of source file for View Source user
    # editor: visual
                             option. Since this file is stored in a GitHub repository,
    editor_options:
                             I specified repo.
20
       chunk_output_type: console
21 - ---
```



Where are we?

CI's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$	$\frac{s_d}{\sqrt{n}}$
11	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$	$\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$ or pooled
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	???
12	8.2	Diff in pop proportions	p_1-p_2	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$???

Goals for today (Sections 8.1-8.2)

- Statistical inference for a single proportion or the difference of two (independent) proportions
 - 1. Sampling distribution for a proportion or difference in proportions
 - 2. What are H_0 and H_a ?
 - 3. What are the SE's for \hat{p} and $\hat{p}_1 \hat{p}_2$?
 - 4. Hypothesis test
 - 5. Confidence Interval
 - 6. How are the SE's different for a hypothesis test & CI?
 - 7. How to run proportions tests in R
 - 8. Power & sample size for proportions tests (extra material)

Motivating example

One proportion

- A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year.
 - What is the CI for the proportion?
 - The study also reported that 36% of noncollege young males had participated in sports betting. Is the proportion for male college students different from 0.36?

Two proportions

- There were 214 men in the sample of noncollege young males (36% participated in sports betting in the previous year).
- Compare the difference in proportions between the college and noncollege young males.
 - CI & Hypothesis test

Barnes GM, Welte JW, Hoffman JH, Tidwell MC. Comparisons of gambling and alcohol use among college students and noncollege young people in the United States. J Am Coll Health. 2010 Mar-Apr;58(5):443-52. doi: 10.1080/07448480903540499. PMID: 20304756; PMCID: PMC4104810.

Steps in a Hypothesis Test

- 1. Set the **level of significance** lpha
- 2. Specify the **null** (H_0) and **alternative** (H_A) **hypotheses**
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 3. Calculate the **test statistic**.
- 4. Calculate the p-value based on the observed test statistic and its sampling distribution
- 5. Write a **conclusion** to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 2: Null & Alternative Hypotheses

Null and alternative hypotheses in words and in symbols.

One sample test

- H_0 : The population proportion of young male college students that participated in sports betting in the previous year is 0.36.
- H_A : The population proportion of young male college students that participated in sports betting in the previous year is not 0.36.

$$H_0: p = 0.36$$

 $H_A: p \neq 0.36$

Two samples test

- H_0 : The difference in population proportions of young male college and noncollege students that participated in sports betting in the previous year is 0.
- H_A : The difference in population proportions of young male college and noncollege students that participated in sports betting in the previous year is not 0.

$$egin{aligned} H_0:&p_{coll}-p_{noncoll}=0\ H_A:&p_{coll}-p_{noncoll}
eq 0 \end{aligned}$$

Sampling distribution of \hat{p}

- ullet $\hat{p}=rac{X}{n}$ where X is the number of "successes" and n is the sample size.
- ullet $X \sim Bin(n,p)$, where p is the population proportion.
- ullet For n "big enough", the normal distribution can be used to approximate a binomial distribution:

$$Bin(n,p) o N\Big(\mu=np,\sigma=\sqrt{np(1-p)}\Big)$$

• Since $\hat{p} = rac{X}{n}$ is a linear transformation of X, we have for large n:

$$\hat{p} \sim N \Big(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}} \Big)$$

How we apply this result to CI's and test statistics is different!!!

Step 3: Test statistic

Sampling distribution of \hat{p} if we assume $H_0: p=p_0$ is true:

$$\hat{p} \sim N\Big(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}}\Big) \sim N\Big(\mu_{\hat{p}} = p_0, \sigma_{\hat{p}} = \sqrt{rac{p_0 \cdot (1-p_0)}{n}}\Big)$$

Test statistic for a one sample proportion test:

$$ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE} = z_{\hat{p}} = rac{\hat{p} - p_0}{\sqrt{rac{p_0 \cdot (1 - p_0)}{n}}}$$

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year.

What is the test statistic when testing $H_0: p=0.36$ vs. $H_A: p \neq 0.36$?

$$z_{\hat{p}} = rac{94/269 - 0.36}{\sqrt{rac{0.36 \cdot (1 - 0.36)}{269}}} \ - 0.3607455$$

Step "3b": Conditions satisfied?

Conditions:

- 1. Independent observations?
 - The observations were collected independently.
- 2. The number of expected successes and expected failures is at least 10.
 - $n_1p_0 \ge 10$, $n_1(1-p_0) \ge 10$

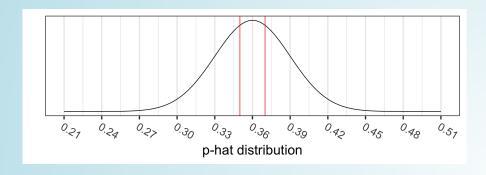
Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year.

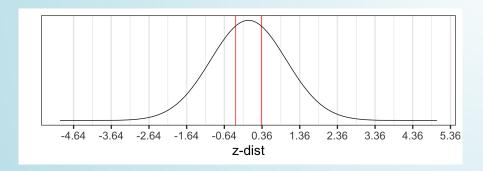
Testing $H_0: p=0.36$ vs. $H_A: p
eq 0.36$.

Are the conditions satisfied?

Step 4: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.





Calculate the *p*-value:

$$egin{aligned} 2 \cdot P(\hat{p} < 0.35) \ &= 2 \cdot P\Big(Z_{\hat{p}} < rac{94/269 - 0.36}{\sqrt{rac{0.36 \cdot (1 - 0.36)}{269}}}\Big) \ &= 2 \cdot P(Z_{\hat{p}} < -0.3607455) \ &= 0.7182897 \end{aligned}$$

1 2*pnorm(-0.3607455)

[1] 0.7182897

Step 5: Conclusion to hypothesis test

$$H_0: p = 0.36 \ H_A: p
eq 0.36$$

- Recall the *p*-value = 0.7182897
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is insufficient evidence that the (population) proportion of young male college students that participated in sports betting in the previous year is different than 0.36 (p-value = 0.72).
- More realistic manuscript conclusion:
 - In a sample of 269 male college students, 35% had participated in sports betting in the previous year, which is not different from 36% (p-value = 0.72).

95% CI for population proportion

What to use for SE in CI formula?

$$\hat{p}\pm z^*\cdot SE_{\hat{p}}$$

Sampling distribution of \hat{p} :

$$\hat{p} \sim N \Big(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}} \Big)$$

Problem: We don't know what p is - it's what

we're estimating with the CI.

Solution: approximate p with \hat{p} :

$$SE_{\hat{p}} = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year. Find the 95% CI for the population proportion.

$$94/269 \pm 1.96 \cdot SE_{\hat{p}}$$
 $SE_{\hat{p}} = \sqrt{rac{(94/269)(1-94/269)}{269}} \ (0.293, 0.407)$

Interpretation:

We are 95% confident that the (population) proportion of young male college students that participated in sports betting in the previous year is in (0.29, 0.41).

Conditions for one proportion: test vs. Cl

Hypothesis test conditions

- 1. Independent observations
 - The observations were collected independently.

2. The number of **expected** successes and **expected** failures is at least 10.

$$n_1p_0 \ge 10, \ \ n_1(1-p_0) \ge 10$$

Confidence interval conditions

- 1. *Independent observations*
 - The observations were collected independently.

2. The number of successes and failures is at least 10:

$$n_1\hat{p}_1 \ge 10, \ \ n_1(1-\hat{p}_1) \ge 10$$

Inference for difference of two independent proportions

$$\hat{p}_1 - \hat{p}_2$$

Sampling distribution of $\hat{p}_1 - \hat{p}_2$

- ullet $\hat{p}_1=rac{X_1}{n_1}$ and $\hat{p}_2=rac{X_2}{n_2}$,
 - $X_1 \& X_2$ are the number of "successes"
 - $n_1 \& n_2$ are the sample sizes of the 1st & 2nd samples
- ullet Each \hat{p} can be approximated by a normal distribution, for "big enough" n
- ullet Since the difference of independent normal random variables is also normal, it follows that for "big enough" n_1 and n_2

$$\hat{p}_1 - \hat{p}_2 \sim N \Big(\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2, \;\; \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{rac{p_1 \cdot (1 - p_1)}{n_1}} + rac{p_2 \cdot (1 - p_2)}{n_2} \Big)$$

where $p_1 \& p_2$ are the population proportions, respectively.

How we apply this result to Cl's and test statistics is different!!!

Step 3: Test statistic (1/2)

Sampling distribution of $\hat{p}_1 - \hat{p}_2$:

$$\hat{p}_1 - \hat{p}_2 \sim N \Big(\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2, \;\; \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{rac{p_1 \cdot (1 - p_1)}{n_1}} + rac{p_2 \cdot (1 - p_2)}{n_2} \Big)$$

Since we assume $H_0: p_1-p_2=0$ is true, we "pool" the proportions of the two samples to calculate the SE:

$$ext{pooled proportion} = \hat{p}_{pool} = rac{ ext{total number of successes}}{ ext{total number of cases}} = rac{x_1 + x_2}{n_1 + n_2}$$

Test statistic:

$$ext{test statistic} = z_{\hat{p}_1 - \hat{p}_2} = rac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{rac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_1} + rac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_2}}}$$

Step 3: Test statistic (2/2)

$$ext{test statistic} = z_{\hat{p}_1 - \hat{p}_2} = rac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{rac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_1} + rac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_2}}}$$

$$ext{pooled proportion} = \hat{p}_{pool} = rac{ ext{total number of successes}}{ ext{total number of cases}} = rac{x_1 + x_2}{n_1 + n_2}$$

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year, and out of 214 noncollege young males 36% had.

What is the test statistic when testing $H_0: p_{coll} - p_{noncoll} = 0$ vs.

$$H_A: p_{coll} - p_{noncoll} \neq 0$$
?

$$z_{\hat{p}_1 - \hat{p}_2} = rac{94/269 - 77/214 - 0}{\sqrt{0.354 \cdot (1 - 0.354)(rac{1}{269} + rac{1}{214})}} = -0.2367497$$

Step "3b": Conditions satisfied?

Conditions:

- Independent observations & samples
 - The observations were collected independently.
 - In particular, observations from the two groups weren't paired in any meaningful way.
- The number of expected successes and expected failures is at least 10 for each group
 using the pooled proportion:
 - $lacksquare n_1 \hat{p}_{pool} \ge 10, \ \ n_1 (1 \hat{p}_{pool}) \ge 10$
 - $lacksquare n_2 \hat{p}_{pool} \geq 10, \ \ n_2 (1 \hat{p}_{pool}) \geq 10$

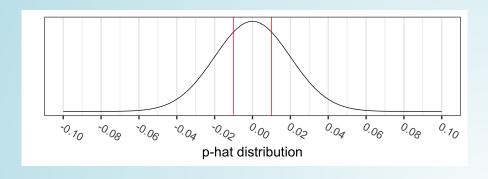
Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year, and out of 214 noncollege young males 36% had.

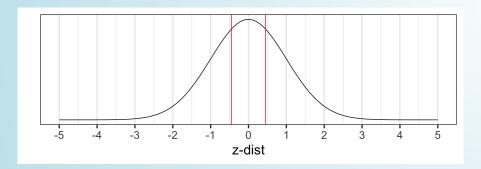
Testing
$$H_0: p_{coll} - p_{noncoll} = 0$$
 vs. $H_A: p_{coll} - p_{noncoll}
eq 0$? .

Are the conditions satisfied?

Step 4: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.





Calculate the *p*-value:

[1] 0.812851

Step 5: Conclusion to hypothesis test

$$egin{aligned} H_0:&p_{coll}-p_{noncoll}=0\ H_A:&p_{coll}-p_{noncoll}
eq 0 \end{aligned}$$

- Recall the *p*-value = 0.812851
- Use $\alpha = 0.05$.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is insufficient evidence that the difference in (population) proportions of young male college and noncollege students that participated in sports betting in the previous year are different (p-value = 0.81).
- More realistic manuscript conclusion:
 - 35% of young male college students (n=269) and 36% of noncollege young males (n=214) participated in sports betting in the previous year (p-value = 0.81).

95% CI for population difference in proportions

What to use for SE in CI formula?

 $\hat{p}_1-\hat{p}_2\pm z^*\cdot SE_{\hat{p}_1-\hat{p}_2}$

SE in sampling distribution of $\hat{p}_1 - \hat{p}_2$

 $\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{rac{p_1 \cdot (1 - p_1)}{n_1} + rac{p_2 \cdot (1 - p_2)}{n_2}}$

Problem: We don't know what p is - it's what

we're estimating with the Cl.

Solution: approximate p_1 , p_2 with \hat{p}_1 , \hat{p}_2 :

$$SE_{\hat{p}_1 - \hat{p}_2} = \sqrt{rac{\hat{p}_1 \cdot (1 - \hat{p}_1)}{n_1} + rac{\hat{p}_2 \cdot (1 - \hat{p}_2)}{n_2}}$$

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year, and out of 214 noncollege young males 36% had. Find the 95% CI for the difference in population proportions.

$$egin{align} rac{94}{269} - rac{77}{214} \pm 1.96 \cdot SE_{\hat{p}_1 - \hat{p}_2} \ SE_{\hat{p}_1 - \hat{p}_2} = \ \sqrt{rac{94/269 \cdot (1 - 94/269)}{269} + rac{77/214 \cdot (1 - 77/214)}{214}} \ \end{array}$$

Interpretation:

We are 95% confident that the difference in (population) proportions of young male college and noncollege students that participated in sports betting in the previous year is in (-0.127, 0.106).

Conditions for difference in proportions: test vs. Cl

Hypothesis test conditions

- 1. *Independent observations & samples*
 - The observations were collected independently.
 - In particular, observations from the two groups weren't paired in any meaningful way.

2. The number of **expected** successes and **expected** failures is at least 10 *for each group* - using the pooled proportion:

•
$$n_1 \hat{p}_{pool} \ge 10$$
, $n_1 (1 - \hat{p}_{pool}) \ge 10$

$$ullet n_2 \hat{p}_{pool} \geq 10, \;\; n_2 (1 - \hat{p}_{pool}) \geq 10.$$

Confidence interval conditions

- 1. *Independent observations & samples*
 - The observations were collected independently.
 - In particular, observations from the two groups weren't paired in any meaningful way.
- 2. The number of successes and failures is at least 10 *for each group*.

•
$$n_1\hat{p}_1 \ge 10$$
, $n_1(1-\hat{p}_1) \ge 10$

$$\bullet \ n_2 \hat{p}_2 \geq 10, \ n_2 (1 - \hat{p}_2) \geq 10$$

R: 1- and 2-sample proportions tests

```
prop.test(x, n, p = NULL,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    correct = TRUE)
```

- 2 options for data input
 - 1. Summary counts
 - x = vector with counts of "successes"
 - n = vector with sample size in each group
 - 2. Dataset
 - x = table() of dataset
 - Need to create a dataset based on the summary stats if do not already have one
- Continuity correction

R: 1-sample proportion test

"1-prop z-test"

Summary stats input for 1-sample proportion test

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year.

Test $H_0: p=0.36$ vs. $H_A: p
eq 0.36$?

```
1 .35*269 # number of "successes"; round this value
[1] 94.15
                                  \# x = \# successes & n = sample size
    prop.test(x = 94, n = 269,
              p = 0.36,
                                       # null value p0
  2
               alternative = "two.sided", # 2-sided alternative
              correct = FALSE) # no continuity correction
  4
   1-sample proportions test without continuity correction
data: 94 out of 269, null probability 0.36
X-squared = 0.13014, df = 1, p-value = 0.7183
alternative hypothesis: true p is not equal to 0.36
95 percent confidence interval:
0.2949476 0.4081767
sample estimates:
0.3494424
```

Can tidy() test output:

Dataset input for 1-sample proportion test (1/2)

Since we don't have a dataset, we first need to create a dataset based on the results:

"out of 269 male college students, 35% had participated in sports betting in the previous year"

```
1 .35*269 # number of "successes"; roun
[1] 94.15

1 SportsBet1 <- tibble(
2 Coll = c(rep("Bet", 94),
3 rep("NotBet", 269-94))
4 )</pre>
```

```
1 glimpse(SportsBet1)

Rows: 269
Columns: 1
$ Coll <chr> "Bet", "Be
```

R code for proportions test requires input as a base R table:

```
1 table(SportsBet1$Coll)

Bet NotBet
94 175
```

Dataset input for 1-sample proportion test (2/2)

- When using a dataset, prop. test requires the input x to be a table
- Note that we do not also specify n since the table already includes all needed information.

Compare output with summary stats method:

estimate	statistic	p.value parame	ter	conf.low	conf.high	method	alternative
0.3494424 0).1301373	0.7182897	1	0.2949476	0.4081767	1-sample proportions test without continuity correction	two.sided

Continuity correction: 1-prop z-test with vs. without CC

- Recall that when we approximated the
- binomial distribution with a normal distribution to calculate a probability,
- that we included a continuity correction (CC)
- to account for approximating a discrete distribution with a continuous distribution.

```
prop.test(x = 94, n = 269, p = 0.36, alternative = "two.sided",
correct = TRUE) %>%
tidy() %>% gt()

estimate statistic p.value parameter conf.low conf.high method alternative
0.3494424 0.08834805 0.7662879 1 0.2931841 0.4100774 1-sample proportions test with continuity correction two.sided
```

Differences are small when sample sizes are large.

R: 2-samples proportion test

"2-prop z-test"

Summary stats input for 2-samples proportion test

Example: A 2010 study found that out of 269 male college students, 35% had participated in sports betting in the previous year, and out of 214 noncollege young males 36% had. Test $H_0: p_{coll} - p_{noncoll} = 0$ vs. $H_A: p_{coll} - p_{noncoll} \neq 0$.

```
1 # round the number of successes:
 2 .35*269 # number of "successes" in college students
[1] 94.15
 1 .36*214 # number of "successes" in noncollege students
[1] 77.04
                                               # vector for # of successes in each group
 1 NmbrBet <- c(94, 77)
 2 TotalNmbr <-c(269, 214)
                                               # vector for sample size in each group
 3
 4 prop.test(x = NmbrBet,
                                               # x is # of successes in each group
                                             # n is sample size in each group
 5
              n = TotalNmbr,
              alternative = "two.sided", # 2-sided alternative
 6
                                               # no continuity correction
               correct = FALSE)
   2-sample test for equality of proportions without continuity correction
data: NmbrBet out of TotalNmbr
X-squared = 0.05605, df = 1, p-value = 0.8129
alternative hypothesis: two.sided
95 percent confidence interval:
-0.09628540 0.07554399
sample estimates:
  prop 1 prop 2
0.3494424 0.3598131
```

Dataset input for 2-samples proportion test (1/2)

Since we don't have a dataset, we first need to create a dataset based on the results:

"out of 269 male college students, 35% had participated in sports betting in the previous year, and out of 214 noncollege young males 36% had"

```
1 # round the number of successes:
2 .35*269 # college students

[1] 94.15

1 .36*214 # noncollege students

[1] 77.04

1 SportsBet2 <- tibble(
2 Group = c(rep("College", 269),
3 rep("NonCollege", 214)),
4 Bet = c(rep("yes", 94),
5 rep("no", 269-94),
6 rep("yes", 77),
7 rep("no", 214-77))
8 )</pre>
```

R code for proportions test requires input as a base R table:

Dataset input for 2-samples proportion test (2/2)

- When using a dataset, prop. test requires the input x to be a table
- Note that we do not also specify n since the table already includes all needed information.

```
prop.test(x = table(SportsBet2$Group, SportsBet2$Bet),
    alternative = "two.sided",
    correct = FALSE)

2-sample test for equality of proportions without continuity correction

data: table(SportsBet2$Group, SportsBet2$Bet)
X-squared = 0.05605, df = 1, p-value = 0.8129
alternative hypothesis: two.sided
95 percent confidence interval:
    -0.07554399    0.09628540
sample estimates:
    prop 1    prop 2
0.6505576    0.6401869
```

Compare output with summary stats method:

estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method	alternative
0.3494424	0.3598131	0.05605044	0.8128509	1	-0.0962854	0.07554399	2-sample test for equality of proportions without continuity correction	two.sided

Continuity correction: 2-prop z-test with vs. without CC

- Recall that when we approximated the
- binomial distribution with a normal distribution to calculate a probability,
- that we included a continuity correction (CC)
- to account for approximating a discrete distribution with a continuous distribution.

```
1 prop.test(x = NmbrBet, n = TotalNmbr, alternative = "two.sided",
2 correct = TRUE) %>% tidy() %>% gt()

estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative

0.3494424 0.3598131 0.01987511 0.8878864 1 -0.1004806 0.07973918 2-sample test for equality of proportions with continuity correction
```

Differences are small when sample sizes are large.

Power & sample size for testing proportions

Sample size calculation for testing one proportion

- Recall in our sports betting example that the null $p_0=0.36$ and the observed proportion was $\hat{p}=0.35$.
 - The *p*-value from the hypothesis test was not significant.
 - How big would the sample size *n* need to be in order for the *p*-value to be significant?
- Calculate n
 - given α , power ($1-\beta$), "true" alternative proportion p, and null p_0 :

$$n = p(1-p) \left(\frac{z_{1-\alpha/2} + z_{1-\beta}}{p-p_0}\right)^2 \begin{bmatrix} 1 & \text{p} < -0.35 \\ 2 & \text{p0} < -0.36 \\ 3 & \text{alpha} < -0.05 \\ 4 & \text{beta} < -0.20 & \#\text{power=1-beta; want} >= 80\% & \text{power} \\ 5 & \text{n} < -\text{p*}(1-\text{p})*((\text{qnorm}(1-\text{alpha/2}) + \text{qnorm}(1-\text{beta})) / 6 \\ 6 & (\text{p-p0}))^2 \\ \hline 7 & \text{n} \\ \hline [1] & 17856.2 \\ \hline 1 & \text{ceiling(n)} \\ \hline [1] & 17857 \end{bmatrix}$$

We would need a sample size of at least 17,857!

Power calculation for testing one proportion

Conversely, we can calculate how much power we had in our example given the sample size of 269.

Calculate power,

lacktriangle given lpha, n, "true" alternative proportion p, and null p_0

$$1-eta=\Phi\left(z-z_{1-lpha/2}
ight)+\Phi\left(-z-z_{1-lpha/2}
ight) \quad ext{,} \quad ext{where } z=rac{p-p_0}{\sqrt{rac{p(1-p)}{n}}}$$

 Φ is the probability for a standard normal distribution

```
1 p <- 0.35; p0 <- 0.36; alpha <- 0.05; n <- 269
2 (z <- (p-p0)/sqrt(p*(1-p)/n))

[1] -0.343863

1 (Power <- pnorm(z - qnorm(1-alpha/2)) + pnorm(-z - qnorm(1-alpha/2)))

[1] 0.06365242</pre>
```

If the population proportion is 0.35 instead of 0.36, we only have a 6.4% chance of correctly rejecting H_0 when the sample size is 269.

R package pwr for power analyses

- Specify all parameters except for the one being solved for.
- One proportion

```
pwr.p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL, alternative
= c("two.sided","less","greater"))
```

Two proportions (same sample sizes)

```
pwr.2p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
```

Two proportions (different sample sizes)

```
pwr.2p2n.test(h = NULL, n1 = NULL, n2 = NULL, sig.level = 0.05, power =
NULL, alternative = c("two.sided", "less", "greater"))
```

h is the effect size, and calculated using an arcsine transformation:

$$h = \text{ES.h}(\text{p1}, \text{p2}) = 2\arcsin(\sqrt{p_1}) - 2\arcsin(\sqrt{p_2})$$

See PASS documentation for

- testing 1 proportion using effect size vs. other ways of powering a test of 1 proportion
- testing 2 proportions using effect size vs. other ways of powering a test of 2 proportions.

pwr: sample size for one proportion test

```
pwr.p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL, alternative
= c("two.sided","less","greater"))
```

- h is the effect size: h = ES.h(p1, p2)
 - p1 and p2 are the two proportions being tested
 - one of them is the null proportion p_0 , and the other is the alternative proportion

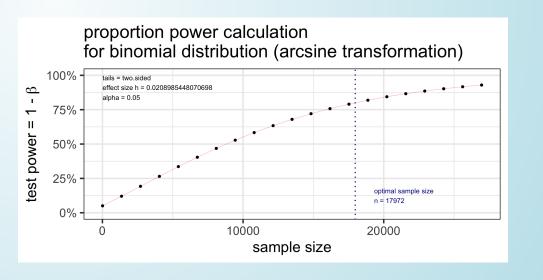
Specify all parameters *except for* the sample size:

```
1 library(pwr)
2
3 p.n <- pwr.p.test(
4   h = ES.h(p1 = 0.36, p2 = 0.35),
5   sig.level = 0.05,
6   power = 0.80,
7   alternative = "two.sided")
8 p.n

proportion power calculation for binomial distribution (arcsine transformation)

        h = 0.02089854
        n = 17971.09
        sig.level = 0.05
            power = 0.8
        alternative = two.sided</pre>
```

```
1 plot(p.n)
```



pwr: power for one proportion test

```
pwr.p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL, alternative
= c("two.sided","less","greater"))
```

- h is the effect size: h = ES.h(p1, p2)
 - p1 and p2 are the two proportions being tested
 - one of them is the null proportion p_0 , and the other is the alternative proportion

Specify all parameters except for the power:

```
1 library(pwr)
2
3 p.power <- pwr.p.test(
4   h = ES.h(p1 = 0.36, p2 = 0.35),
5   sig.level = 0.05,
6   # power = 0.80,
7   n = 269,
8   alternative = "two.sided")
9 p.power

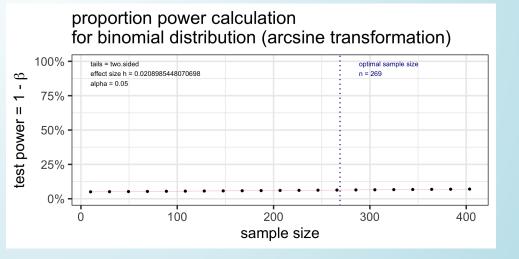
proportion power calculation for binomial distribution (arcsine transformation)

   h = 0.02089854
   n = 269
   sig.level = 0.05</pre>
```

power = 0.06356445

alternative = two.sided

```
1 plot(p.power)
```



pwr: sample size for two proportions test

Two proportions (same sample sizes)

```
pwr.2p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
```

• h is the effect size: $h = ES_h(p1, p2)$; p1 and p2 are the two proportions being tested

Specify all parameters except for the sample size:

```
1 p2.n <- pwr.2p.test(
2   h = ES.h(p1 = 0.36, p2 = 0.35),
3   sig.level = 0.05,
4   power = 0.80,
5   alternative = "two.sided")
6 p2.n</pre>
```

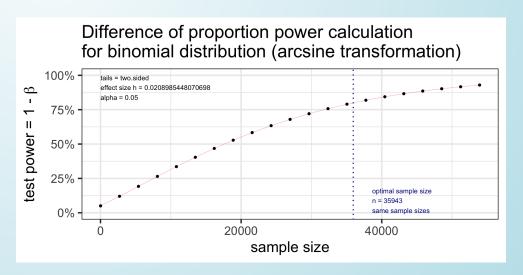
Difference of proportion power calculation for binomial distribution (arcsine transformation)

```
h = 0.02089854
n = 35942.19
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: same sample sizes
```

Note: n in output is the **number per** sample!

```
1 plot(p2.n)
```



pwr: power for two proportions test

Two proportions (different sample sizes)

```
pwr.2p2n.test(h = NULL, n1 = NULL, n2 = NULL, sig.level = 0.05, power =
NULL, alternative = c("two.sided", "less","greater"))
```

• h is the effect size: h = ES.h(p1, p2); p1 and p2 are the two proportions being tested

Specify all parameters except for the power:

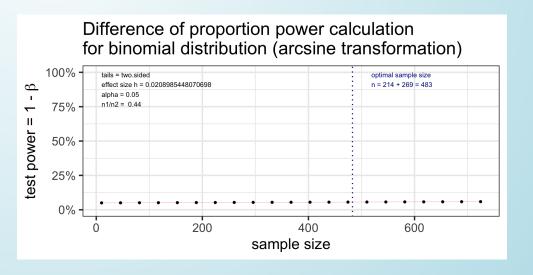
```
1 p2.n2 <- pwr.2p2n.test(
2    h = ES.h(p1 = 0.36, p2 = 0.35),
3    n1 = 214,
4    n2 = 269,
5    sig.level = 0.05,
6    # power = 0.80,
7    alternative = "two.sided")
8 p2.n2</pre>
```

difference of proportion power calculation for binomial distribution (arcsine transformation)

```
h = 0.02089854
n1 = 214
n2 = 269
sig.level = 0.05
power = 0.05598413
alternative = two.sided
```

Note: n in output is the **number per** sample!

```
1 plot(p2.n2)
```



Where are we?

Cl's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$	$rac{s_d}{\sqrt{n}}$
11	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$	$\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$ or pooled
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	$\sqrt{rac{p(1-p)}{n}}$
12	8.2	Diff in pop proportions	$p_1 - p_2$	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$	$\sqrt{rac{p_1 \cdot (1-p_1)}{n_1} + rac{p_2 \cdot (1-p_2)}{n_2}}$