Day 11: Inference for difference in means from two independent samples and Power (Sections 5.3, 5.4)

BSTA 511/611

Meike Niederhausen, PhD
OHSU-PSU School of Public Health

2023-11-06

MoRitz's tip of the day

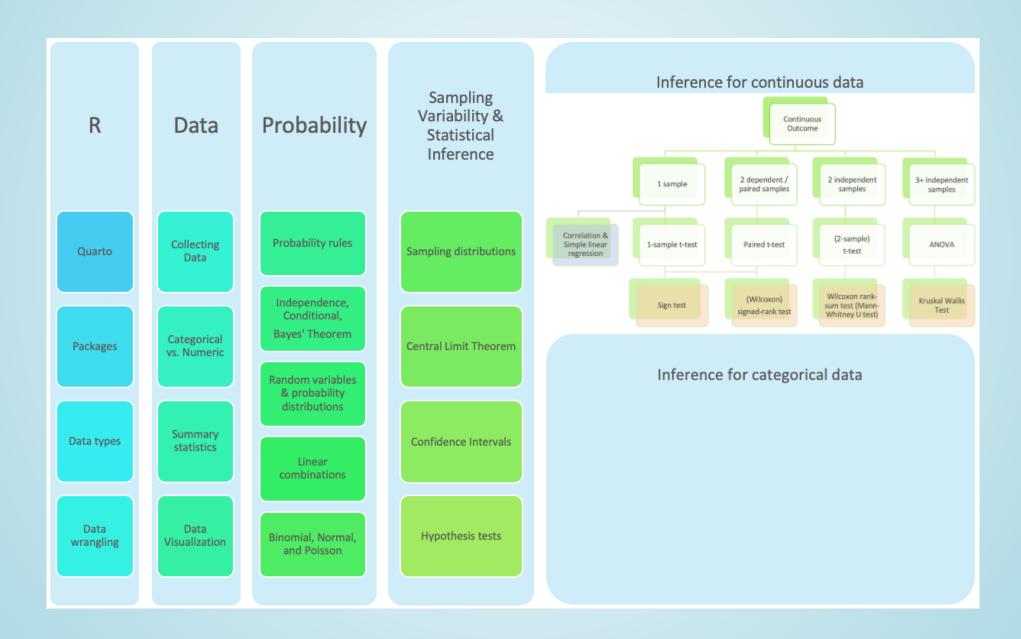
Add tabbed sections to your html file using tabset.

First tab

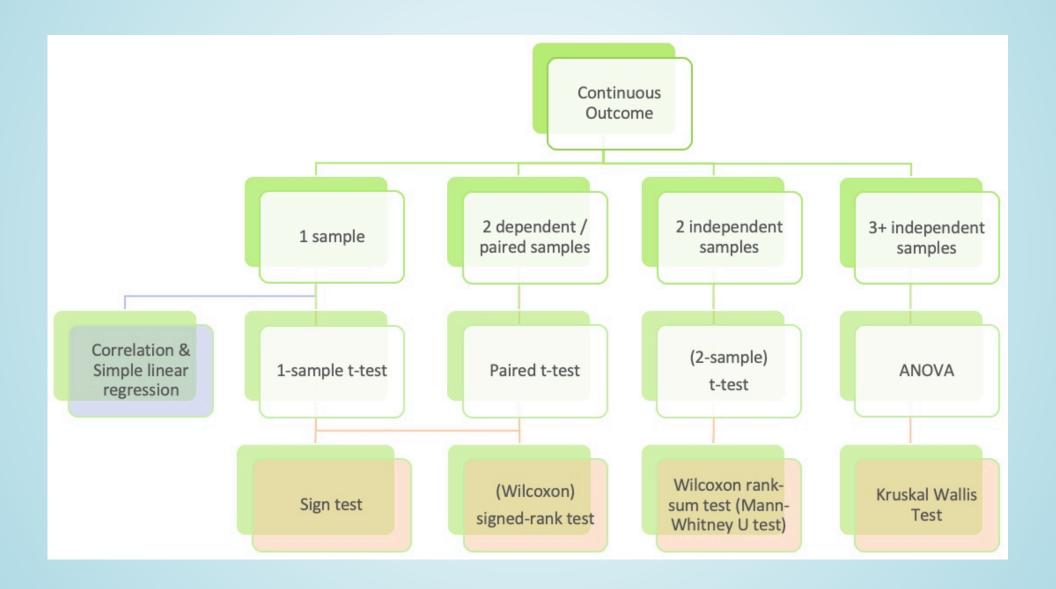
Second tab Read up on tabsets

- You can make subsections appear as different tabs in your html file.
- This is the first tab.
- It was created by adding ::: panel-tabset right above the subsection ### First tab (see the code file).
- Look up to the right of where it says "First tab," and you will see a second tab with the creative name "Second tab."
- If you are viewing the html output of this file, you can click on the different tabs to see what's in them.
- To stop new tabs from being created, close off the original ::: paneltabset command with ::: at the end.
 - In the source code file, you will see the ::: at the end of the ### Read up on tabsets tab.

Where are we?



Where are we? Continuous outcome zoomed in



Where are we?

CI's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$	$rac{s_d}{\sqrt{n}}$
11	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$???
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	
12	8.2	Diff in pop proportions	p_1-p_2	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$	

Goals for today

2-sample t-test (Section 5.3)

- Statistical inference for difference in means from 2 independent samples
 - 1. What are H_0 and H_a ?
 - 2. What is the SE for $\bar{x}_1 \bar{x}_2$?
 - 3. Hypothesis test
 - 4. Confidence Interval
 - 5. Run test in R using long vs. wide data
 - 6. Satterthwaite's df
 - 7. Pooled SD

Power and sample size (4.3.4, 5.4, plus notes)

- Critical values & rejection region
- Type I & II errors
- Power
- How to calculate sample size needed for a study?

Examples of designs with two independent samples

- Any study where participants are randomized to a control and treatment group
- Study where create two groups based on whether they were exposed or not to some condition (can be observational)
- Book: "Does treatment using embryonic stem cells (ESCs) help improve heart function following a heart attack?"
- Book: "Is there evidence that newborns from mothers who smoke have a different average birth weight than newborns from mothers who do not smoke?"
- The key is that the data from the two groups are independent of each other.

Steps in a Hypothesis Test

- 1. Set the **level of significance** lpha
- 2. Specify the **null** (H_0) and **alternative** (H_A) **hypotheses**
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 3. Calculate the **test statistic**.
- 4. Calculate the p-value based on the observed test statistic and its sampling distribution
- 5. Write a **conclusion** to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Does caffeine increase finger taps/min (on average)?

Study Design:

- 20 male college students students were trained to tap their fingers at a rapid rate.
- Each then drank 2 cups of coffee (double-blind)
 - Control group: decaf
 - Caffeine group: ~ 200 mg caffeine
- After 2 hours, students were tested.
- Taps/minute recorded

Hand, David J.; Daly, Fergus; McConway, K.; Lunn, D. and Ostrowski, E. (1993). A handbook of small data sets. London, U.K.: Chapman and Hall.

Load the data from the csv file CaffeineTaps.csv

\$ Group <chr> "Caffeine", "Caf

• The code below is for when the data file is in a folder called data that is in your R project folder (your working directory)

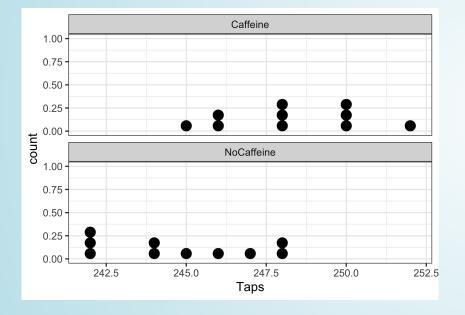
```
1 CaffTaps <- read_csv(here::here("data", "CaffeineTaps.csv"))
2
3 glimpse(CaffTaps)

Rows: 20
Columns: 2
$ Taps <dbl> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250, 242, 245, 244,...
```

EDA: Explore the finger taps data

Dotplot of taps/minute stratified by group

```
1 ggplot(CaffTaps, aes(x=Taps)) +
2 geom_dotplot() +
3 facet_wrap(vars(Group), ncol=1)
```



Summary statistics stratified by group

```
1 # get_summary_stats() from rstatix packa
2 sumstats <- CaffTaps %>%
3    group_by(Group) %>%
4    get_summary_stats(type = "mean_sd")
5 sumstats %>% gt()
```

Group	variable	n	mean	sd
Caffeine	Taps	10	248.3	2.214
NoCaffeine	Taps	10	244.8	2.394

```
1 diff(sumstats$mean)
[1] -3.5
```

Step 2: Null & Alternative Hypotheses

 Question: Is there evidence to support that drinking caffeine increases the number of finger taps/min?

Null and alternative hypotheses in **words** *Include as much context as possible*

- H_0 : The population difference in mean finger taps/min between the caffeine and control groups is ...
- H_A : The population difference in mean finger taps/min between the caffeine and control groups is ...

Null and alternative hypotheses in **symbols**

$$egin{aligned} H_0: & \mu_{caff} - \mu_{ctrl} = \ & H_A: & \mu_{caff} - \mu_{ctrl} \end{aligned}$$

Step 3: Test statistic (part 1)

Recall that in general the test statistic has the form:

$$\text{test stat} = \frac{\text{point estimate} - \text{null value}}{SE}$$

Thus, for a two sample independent means test, we have:

$$ext{test statistic} = rac{ar{x}_1 - ar{x}_2 - 0}{SE_{ar{x}_1 - ar{x}_2}}$$

- ullet What is the formula for $SE_{ar{x}_1-ar{x}_2}$?
- What is the probability distribution of the test statistic?
- What assumptions need to be satisfied?

What distribution does $ar{X}_1 - ar{X}_2$ have?

Let \bar{X}_1 and \bar{X}_2 be the means of random samples from two independent groups, with parameters shown in table:

	Group 1	Group 2
sample size	n_1	n_2
pop mean	μ_1	μ_2
pop sd	σ_1	σ_2

Some theoretical statistics:

- ullet If $ar{X}_1$ and $ar{X}_2$ are independent normal r.v.'s, then $ar{X}_1 ar{X}_2$ is also normal
- ullet What is the mean of $ar{X}_1 ar{X}_2$?

$$E[\bar{X}_1 - \bar{X}_2] = E[\bar{X}_1] - E[\bar{X}_2] = \mu_1 - \mu_2$$

ullet What is the standard deviation of $ar{X}_1 - ar{X}_2$?

$$egin{split} Var(ar{X}_1 - ar{X}_2) &= Var(ar{X}_1) + Var(ar{X}_2) = rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2} \ SD(ar{X}_1 - ar{X}_2) &= \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}} \end{split}$$

Step 3: Test statistic (part 2)

$$t_{ar{x}_1-ar{x}_2}=rac{ar{x}_1-ar{x}_2-0}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

- \bar{x}_1, \bar{x}_2 are the sample means
- ullet $\mu_0=0$ is the mean value specified in H_0
- s_1, s_2 are the sample SD's
- n_1, n_2 are the sample sizes
- ullet Statistical theory tells us that $t_{ar{x}_1-ar{x}_2}$ follows a **student's t-distribution** with
 - $lacksquare dfpprox \mathsf{smaller} \ \mathsf{of} \ n_1-1 \ \mathsf{and} \ n_2-1$
 - lacktriangle this is a conservative estimate (smaller than actual df)

Assumptions:

- Independent observations & samples
 - The observations were collected independently.
 - In particular, the observations from the two groups were not paired in any meaningful way.
- Approximately normal samples or big n's
 - The distributions of the samples should be approximately normal
 - or both their sample sizes should be at least 30.

Step 3: Test statistic (part 3)

Group	variable	n	mean	sd
Caffeine	Taps	10	248.3	2.214
NoCaffeine	Taps	10	244.8	2.394

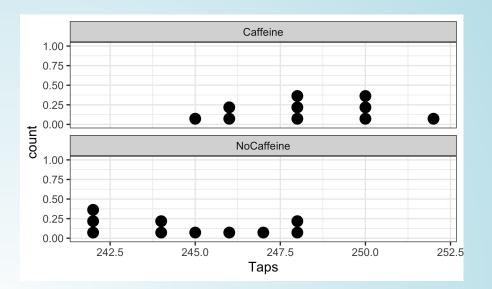
$$ext{test statistic} = t_{ar{x}_1 - ar{x}_2} = rac{ar{x}_1 - ar{x}_2 - 0}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

Based on the value of the test statistic, do you think we are going to reject or fail to reject H_0 ?

Step "3b": Assumptions satisfied?

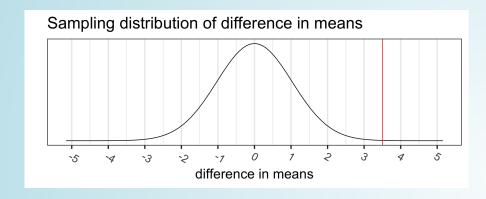
Assumptions:

- Independent observations & samples
 - The observations were collected independently.
 - In particular, the observations from the two groups were not paired in any meaningful way.
- Approximately normal samples or big n's
 - The distributions of the samples should be approximately normal
 - or both their sample sizes should be at least 30.

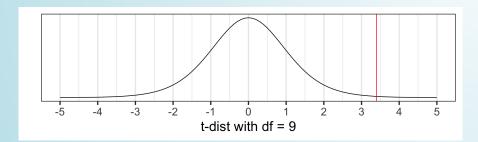


Step 4: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.



Calculate the *p*-value:



Step 5: Conclusion to hypothesis test

$$egin{aligned} H_0: & \mu_{caff} - \mu_{ctrl} = 0 \ H_A: & \mu_{caff} - \mu_{ctrl} > 0 \end{aligned}$$

- Recall the *p*-value = 0.00397
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is sufficient evidence that the (population) difference in mean finger taps/min with vs. without caffeine is greater than 0 (p-value = 0.004).
- More realistic manuscript conclusion:
 - The mean finger taps/min were 244.8 (SD = 2.4) and 248.3 (SD = 2.2) for the control and caffeine groups, and the increase of 3.5 taps/min was statistically discrenible (p-value = 0.004).

95% CI for the mean difference in cholesterol levels

Group	variable	n	mean	sd
Caffeine	Taps	10	248.3	2.214
NoCaffeine	Taps	10	244.8	2.394

CI for $\mu_{caff} - \mu_{ctrl}$:

$$ar{x}_{caff} - ar{x}_{ctrl} \pm t^* \cdot \sqrt{rac{s_{caff}^2}{n_{caff}}} + rac{s_{ctrl}^2}{n_{ctrl}}$$

Interpretation:

We are 95% confident that the (population) difference in mean finger taps/min between the caffeine and control groups is between 1.167 mg/dL and 5.833 mg/dL.

• Based on the CI, is there evidence that drinking caffeine made a difference in finger taps/min? Why or why not?

R: 2-sample t-test (with long data)

- The CaffTaps data are in a long format, meaning that
 - all of the outcome values are in one column and
 - another column indicates which group the values are from
- This is a common format for data from multiple samples, especially if the sample sizes are different.

tidy the t. test output

1 # use tidy command from broom package for briefer output that's a tibble
2 tidy(Taps_2ttest) %>% gt()

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method	alternative
3.5	248.3	244.8	3.394168	0.001627703	17.89012	1.711272	Inf	Welch Two Sample t-test	greater

Pull the p-value:

1 tidy(Taps_2ttest)\$p.value # we can pull specific values from the tidy output
[1] 0.001627703

R: 2-sample t-test (with wide data)

```
1 # make CaffTaps data wide: pivot wider needs an ID column so that it
 2 # knows how to "match" values from the Caffeine and NoCaffeine groups
    CaffTaps wide <- CaffTaps %>%
      mutate(id = rep(1:10, 2)) %>% # "fake" IDs for pivot wider step
      pivot wider(names from = "Group",
                   values from = "Taps")
 6
 7
    glimpse(CaffTaps wide)
Rows: 10
Columns: 3
$ id
         <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$ Caffeine <dbl> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250
$ NoCaffeine <dbl> 242, 245, 244, 248, 247, 248, 242, 244, 246, 242
 1 t.test(x = CaffTaps wide$Caffeine, y = CaffTaps wide$NoCaffeine, alternative = "q
      tidy() %>% qt()
```

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method	alternative
3.5	248.3	244.8	3.394168	0.001627703	17.89012	1.711272	Inf	Welch Two Sample t-test	greater

Why are the df's in the R output different?

From many slides ago:

- ullet Statistical theory tells us that $t_{ar{x}_1-ar{x}_2}$ follows a **student's t-distribution** with
 - $lacksquare dfpprox \mathsf{smaller} \ \mathsf{of} \ n_1-1 \ \mathsf{and} \ n_2-1$
 - lacktriangle this is a **conservative** estimate (smaller than actual df)

The actual degrees of freedom are calculated using Satterthwaite's method:

$$u = rac{[(s_1^2/n_1) + (s_2^2/n_2)]^2}{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)} = rac{[SE_1^2 + SE_2^2]^2}{SE_1^4/df_1 + SE_2^4/df_2}$$

Verify the *p*-value in the R output using ν = 17.89012:

```
1 pt(3.3942, df = 17.89012, lower.tail = FALSE)
[1] 0.001627588
```

Pooled standard deviation estimate

- Sometimes we have reasons to believe that the population SD's from the two groups are equal, such as when randomizing participants to two groups
- In this case we can use a pooled SD:

$$s_{pooled}^2 = rac{s_1^2(n_1-1) + s_2^2(n_2-1)}{n_1 + n_2 - 2}$$

- n_1 , n_2 are the sample sizes, and
- s_1 , s_2 are the sample standard deviations
- of the two groups
- ullet We use the pooled SD instead of s_1^2 and s_2^2 when calculating the standard error

$$SE = \sqrt{rac{s_{pooled}^2}{n_1} + rac{s_{pooled}^2}{n_2}} = s_{pooled} \sqrt{rac{1}{n_1} + rac{1}{n_2}}$$

Test statistic with pooled SD:

CI with pooled SD:

$$t_{ar{x}_1 - ar{x}_2} = rac{ar{x}_1 - ar{x}_2 - 0}{s_{pooled} \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

$$(ar{x}_1 - ar{x}_2) \pm t^\star \cdot s_{pooled} \sqrt{rac{1}{n_1} + rac{1}{n_2}}$$

• The *t* distribution degrees of freedom are now:

$$df = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2.$$

R: 2-sample t-test with pooled SD

```
estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative 3.5 248.3 244.8 3.394168 0.001616497 18 1.711867 Inf Two Sample t-test greater
```

```
# t-test without pooled SD

t.test(formula = Taps ~ Group,

alternative = "greater",

var.equal = FALSE, # default, NOT pooled SD

data = CaffTaps) %>%

tidy() %>%

gt()
```

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method	alternative
3.5	248.3	244.8	3.394168	0.001627703	17.89012	1.711272	Inf	Welch Two Sample t-test	greater

Similar output in this case - why??

What's next?

CI's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

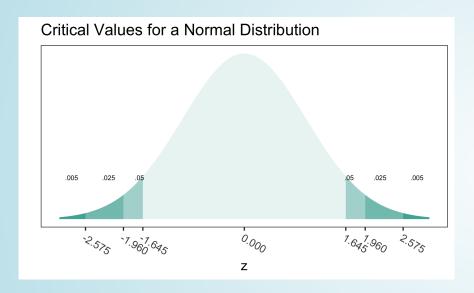
Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$	$\frac{s_d}{\sqrt{n}}$
11	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$	$\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$ or pooled
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	???
12	8.2	Diff in pop proportions	p_1-p_2	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$???

Power and sample size calculations

- Critical values & rejection region
- Type I & II errors
- Power
- How to calculate sample size needed for a study?
- Materials are from
 - Section 4.3.4 Decision errors
 - Section 5.4 Power calculations for a difference of means
 - plus notes

Critical values

- Critical values are the cutoff values that determine whether a test statistic is statistically significant or not.
- ullet If a test statistic is greater in absolute value than the critical value, we reject H_0

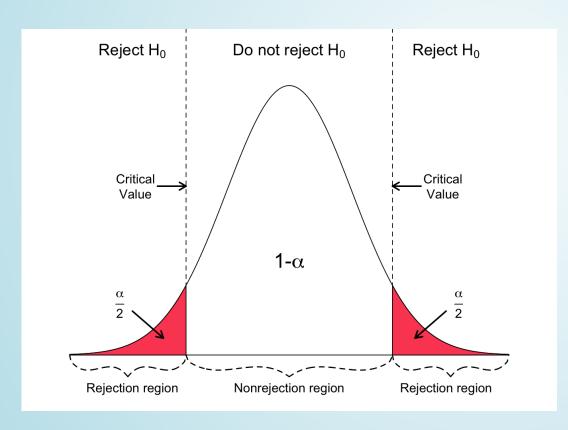


- Critical values are determined by
 - the significance level α ,
 - whether a test is 1- or 2-sided, &
 - the probability distribution being used to calculate the p-value (such as normal or t-distribution).
- The critical values in the figure should look very familiar!
 - Where have we used these before?

How can we calculate the critical values using R?

Rejection region

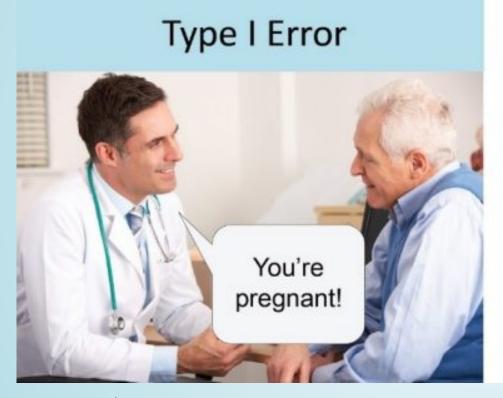
- ullet If the absolute value of the test statistic is greater than the critical value, we reject H_0
 - In this case the test statistic is in the rejection region.
 - Otherwise it's in the nonrejection region.



 What do rejection regions look like for 1-sided tests?

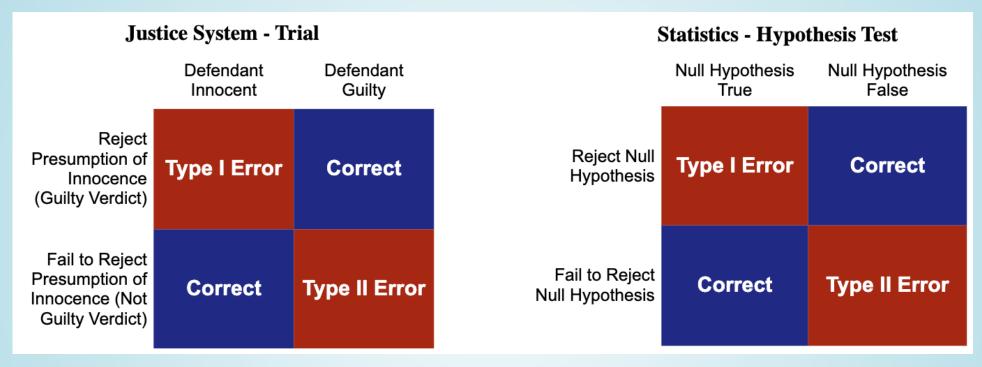
Stats & Geospatial Analysis

Hypothesis Testing "Errors"



StatisticsSolutions

Justice system analogy

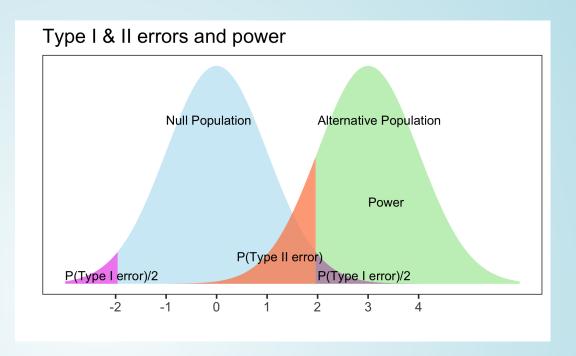


Type I and Type II Errors - Making Mistakes in the Justice System

Type | & || Errors

	Fail to reject null hypothesis	Reject null hypothesis
Null hypothesis is true	Correct! (true negative)	Type I error (false positive) probability = α
Null hypothesis is false	Type II error (false negative) probability = β	Correct! (true positive)

- α = probability of making a
 Type I error
 - This is the significance level (usually 0.05)
 - Set before study starts
- β = probability of making a **Type II error**
- Ideally we want
 - small Type I & II errors and
 - big power

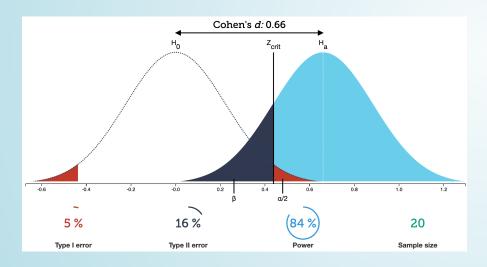


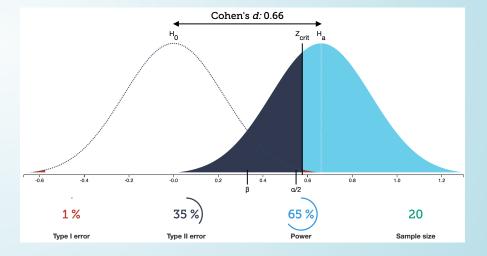
Applet for visualizing Type I & II errors and power: https://rpsychologist.com/d3/NHST/

Relationship between Type I & II errors

- Type I vs. Type II error
 - Decreasing P(Type I error) leads to
 - increasing P(Type II error)
 - We typically keep P(Type I error) = α set to 0.05

From the applet at https://rpsychologist.com/d3/NHST/

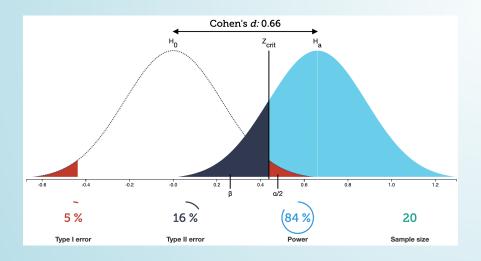




Relationship between Type II errors and power

Power = P(correctly rejecting the null hypothesis)

- Power is also called the
 - true positive rate,
 - probability of detection, or
 - the sensitivity of a test

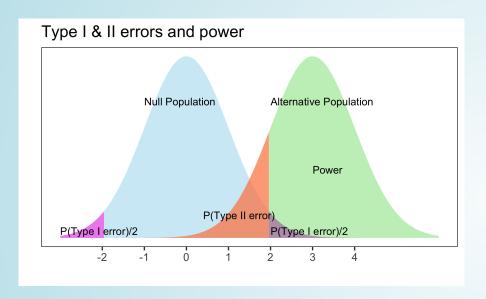


Power vs. Type II error

- Power = 1 P(Type II error) = 1 β
- Thus as β = P(Type II error) decreases, the power increases
- P(Type II error) decreases as the mean of the alternative population shits further away from the mean of the null population (effect size gets bigger).
- Typically want at least 80% power; 90% power is good

Example calculating power

- ullet Suppose the mean of the null population is 0 ($H_0: \mu=0$) with standard error 1
- ullet Find the power of a 2-sided test if the actual $\mu=3$, assuming the SE doesn't change.



- Power = $P(\text{Reject } H_0 \text{ when alternative } \text{pop is } N(3,1))$
- When α = 0.05, we reject H_0 when the test statistic z is at least 1.96
- ullet Thus for $X \sim N(3,1)$ we need to calculate

$$P(X \le -1.96) + P(X \ge 1.96)$$
:

```
1 # left tail + right tail:
2 pnorm(-1.96, mean=3, sd=1, lower.tail=TRUE) + pnorm(1.96, mean=3, sd=1, lower.tail=FALSE)
[1] 0.8508304
```

The left tail probability pnorm(-1.96, mean=3, sd=1, lower.tail=TRUE) is essentially 0 in this case.

ullet Note that this power calculation specified the value of the SE instead of the standard deviation and sample size n individually.

Sample size calculation for testing one mean

- ullet Recall in our body temperature example that $\mu_0=98.6$ °F and ar x=98.25 °F.
 - The *p*-value from the hypothesis test was highly significant (very small).
 - What would the sample size *n* need to be for 80% power?
- Calculate n,
 - lacksquare given lpha, power (1-eta), "true" alternative mean μ , and null μ_0 ,
 - assuming the test statistic is normal (instead of t-distribution):

$$n = \left(s \frac{z_{1-\alpha/2} + z_{1-\beta}}{\mu - \mu_0}\right)^2 \begin{bmatrix} 1 & \text{mu} < -98.25 \\ 2 & \text{mu0} < -98.6 \\ 3 & \text{sd} < -0.73 \\ 4 & \text{alpha} < -0.05 \\ 5 & \text{beta} < -0.20 \\ 6 & \text{n} < -(\text{sd}*(\text{qnorm}(1-\text{alpha/2}) + \text{qnorm}(1-\text{beta})) / (\text{mu-mu0}))^2 \\ 7 & \text{n} \\ \hline & 1 & \text{ceiling(n)} & \# \text{ always round UP to the next highest integer} \\ \hline & [1] & 35 \end{bmatrix}$$

We would only need a sample size of 35 for 80% power! However, this is an under-estimate since we used the normal instead of t-distribution.

See http://powerandsamplesize.com/Calculators/Test-1-Mean/1-Sample-Equality.

Power calculation for testing one mean

Conversely, we can calculate how much power we had in our body temperature one-sample test, given the sample size of 130.

• Calculate power,

- lacktriangle given lpha, n, "true" alternative mean μ , and null μ_0 ,
- assuming the test statistic is normal (instead of t-distribution)

$$1-eta=\Phi\left(z-z_{1-lpha/2}
ight)+\Phi\left(-z-z_{1-lpha/2}
ight) \quad ext{,} \quad ext{where } z=rac{\mu-\mu_0}{s/\sqrt{n}}$$

 Φ is the probability for a standard normal distribution

```
1 mu <- 98.25; mu0 <- 98.6; sd <- 0.73; alpha <- 0.05; n <- 130
2 (z <- (mu-mu0) / (sd/sqrt(n)) )

[1] -5.466595

1 Power <- pnorm(z-qnorm(1-alpha/2)) + pnorm(-z-qnorm(1-alpha/2))
2 Power

[1] 0.9997731</pre>
```

If the population mean is 98.2 instead of 98.6, we have a 99.98% chance of correctly rejecting H_0 when the sample size is 130.

R package pwr for power analyses

- Use pwr.t.test for both one- and two-sample t-tests.
- Specify all parameters except for the one being solved for.

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "less", "greater"))
```

d is **Cohen's** d effect size: small = 0.2, medium = 0.5, large = 0.8

One-sample test (or paired t-test):

$$d = \frac{\mu - \mu_0}{s}$$

Two-sample test (independent):

$$d = rac{ar{x}_1 - ar{x}_2}{s_{pooled}}$$

- $\bar{x}_1 \bar{x}_2$ is the difference in means between the two groups that one would want to be able to detect as being significant,
- ullet s_{pooled} is the pooled SD between the two groups often assume have same sd in each group
- R package pwr for basic statistical tests
 - https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html

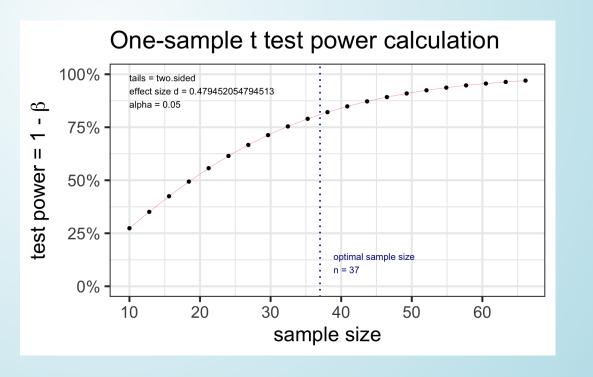
pwr: sample size for one mean test

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided",
"less", "greater"))
```

ullet d is **Cohen's** d effect size: $d=rac{\mu-\mu_0}{s}$

Specify all parameters except for the sample size:

```
1 plot(t.n)
```



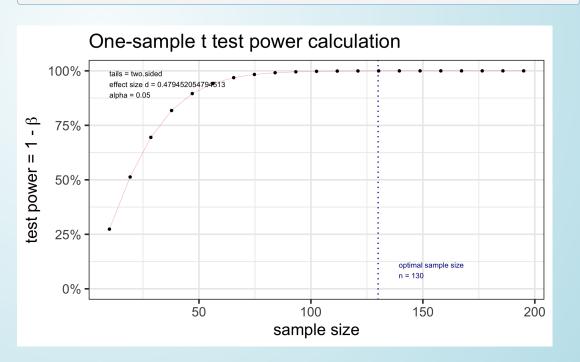
pwr: power for one mean test

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided",
"less", "greater"))
```

ullet d is **Cohen's** d effect size: $d=rac{\mu-\mu_0}{s}$

Specify all parameters *except for* the power:

```
1 plot(t.power)
```



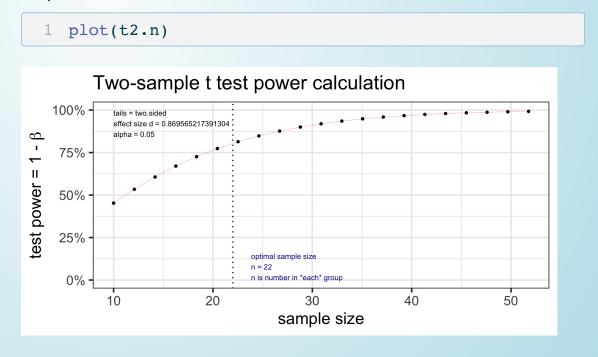
pwr: Two-sample t-test: sample size

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided", "less",
"greater"))
```

ullet d is **Cohen's d** effect size: $d=rac{ar{x}_1-ar{x}_2}{s_{pooled}}$

Example: Suppose the data collected for the caffeine taps study were pilot day for a larger study. Investigators want to know what sample size they would need to detect a 2 point difference between the two groups. Assume the SD in both groups is 2.3.

Specify all parameters except for the sample size:



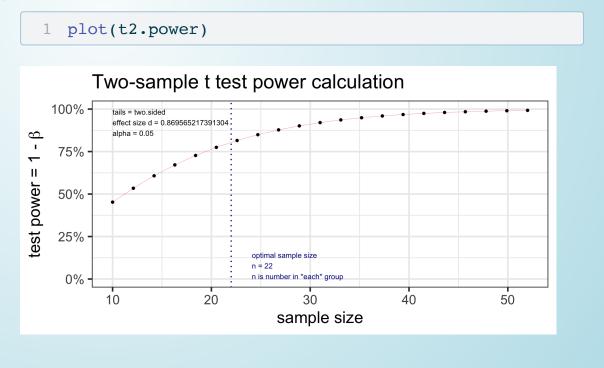
pwr: Two-sample t-test: power

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"), alternative = c("two.sided", "less",
"greater"))
```

ullet d is **Cohen's d** effect size: $d=rac{ar{x}_1-ar{x}_2}{s_{pooled}}$

Example: Suppose the data collected for the caffeine taps study were pilot day for a larger study. Investigators want to know what sample size they would need to detect a 2 point difference between the two groups. Assume the SD in both groups is 2.3.

Specify all parameters except for the power:



What information do we need for a power (or sample size) calculation?

There are 4 pieces of information:

- 1. Level of significance lpha
 - Usually fixed to 0.05
- 2. Power
 - Ideally at least 0.80
- 3. Sample size
- 4. Effect size (expected change)

Given any 3 pieces of information, we can solve for the 4th.

```
1 pwr.t.test(
2  d = (98.6-98.25)/0.73,
3  sig.level = 0.05,
4  # power = 0.80,
5  n=130,
6  type = "one.sample")
```

```
One-sample t test power calculation

n = 130
d = 0.4794521
sig.level = 0.05
power = 0.9997354
alternative = two.sided
```

More software for power and sample size calculations: PASS

- PASS is a very powerful (& expensive) software that does power and sample size calculations for many advanced statistical modeling techniques.
 - Even if you don't have access to PASS, their documentation is very good and free online.
 - Documentation includes formulas and references.
 - PASS documentation for powering means
 - One mean, paired means, two independent means
- One-sample t-test documentation: https://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/PASS/One-Sample_T-Tests.pdf

OCTRI-BERD power & sample size presentations

- Power and Sample Size 101
 - Presented by Meike Niederhausen; April 13, 2023
 - Slides: http://bit.ly/PSS101-BERD-April2023
 - Recording
- Power and Sample Size for Clinical Trials: An Introduction
 - Presented by Yiyi Chen; Feb 18, 2021
 - Slides: http://bit.ly/PSS-ClinicalTrials
 - Recording
- Planning a Study with Power and Sample Size Considerations in Mind
 - Presented by David Yanez; May 29, 2019
 - Slides
 - Recording
- Power and Sample Size Simulations in R
 - Presented by Robin Baudier; Sept 21, 2023
 - Slides
 - Recording