Day 10 Part 2: Inference for mean difference from two-sample dependent/paired data (Section 5.2)

BSTA 511/611

Meike Niederhausen, PhD
OHSU-PSU School of Public Health

2023-11-01

Where are we?

Where are we? Continuous outcome zoomed in

What we covered in Day 10 Part 1

(4.3, 5.1) Hypothesis testing for mean from one sample

- Introduce hypothesis testing using the case of analyzing a mean from one sample (group)
- Steps of a hypothesis test:
 - 1. level of significance
 - 2. null (H_0) and alternative (H_A) hypotheses
 - 3. test statistic
 - 4. p-value
 - 5. conclusion

- Run a hypothesis test in R
 - Load a dataset need to specify location of dataset
 - R projects
 - Run a t-test in R
 - tidy() the test output using broom package

(4.3.3) Confidence intervals (Cls) vs. hypothesis tests

Goals for today: Part 2 - Class discussion

(5.2) Inference for **mean difference** from dependent/paired 2 samples

- Inference: Cls and hypothesis testing
- Exploratory data analysis (EDA) to visualize data
- Run paired t-test in R

One-sided Cls

Class discussion

- Inference for the mean difference from dependent/paired data is a special case of the inference for the mean from just one sample, that was already covered.
- Thus this part will be used for class discussion to practice CIs and hypothesis testing for one mean and apply it in this new setting.
- In class I will briefly introduce this topic, explain how it is similar and different from what we already covered, and let you work through the slides and code.

Cl's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$???
11	5.3	Diff in pop means	$\mu_1 - \mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$	
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	
12	8.2	Diff in pop proportions	p_1-p_2	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$	

Steps in a Hypothesis Test

- 1. Set the **level of significance** lpha
- 2. Specify the **null** (H_0) and **alternative** (H_A) **hypotheses**
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 3. Calculate the **test statistic**.
- 4. Calculate the p-value based on the observed test statistic and its sampling distribution
- 5. Write a **conclusion** to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Examples of paired designs (two samples)

- Enroll pairs of identical twins to study a disease
- Enroll father & son pairs to study cholesterol levels
- Studying pairs of eyes
- Enroll people and collect data before & after an intervention (longitudinal data)
- Textbook example: Compare maximal speed of competitive swimmers wearing a wetsuit vs. wearing a regular swimsuit
 - WIll use these data on homework

Come up with 2 more examples of paired study designs.

Can a vegetarian diet change cholesterol levels?

- Scenario:
 - 24 non-vegetarian people were enrolled in a study
 - They were instructed to adopt a vegetarian diet
 - Cholesterol levels were measured before and after the diet
- Question: Is there evidence to support that cholesterol levels changed after the vegetarian diet?
- How to answer the question?
 - First, calculate changes (differences) in cholesterol levels
 - We usually do after before if the data are longitudinal

Calculate CI for the mean difference δ :

$$ar{x}_d \pm t^* \cdot rac{s_d}{\sqrt{n}}$$

Run a **hypothesis test** Hypotheses

$$egin{aligned} H_0 : & \delta = \delta_0 \ H_A : & \delta
eq \delta_0 \ (or <, >) \end{aligned}$$

Test statistic

$$t_{ar{x}_d} = rac{ar{x}_d - \delta_0}{rac{s_d}{\sqrt{n}}}$$

EDA: Explore the cholesterol data

- Scenario:
 - 24 non-vegetarian people were enrolled in a study
 - They were instructed to adopt a vegetarian diet
 - Cholesterol levels were measured before and after the diet

```
1 chol <- read_csv(here::here("data", "chol213.csv"))
2 glimpse(chol)

Rows: 24
Columns: 2
$ Before <dbl> 195, 145, 205, 159, 244, 166, 250, 236, 192, 224, 238, 197, 169...
$ After <dbl> 146, 155, 178, 146, 208, 147, 202, 215, 184, 208, 206, 169, 182...

1 chol %>%
2  get_summary_stats(type = "common") %>%
3  gt()
```

variable	n	min	max	median	iqr	mean	sd	se	ci
Before	24	137	250	179	44.5	187.792	33.160	6.769	14.002
After	24	125	215	165	38.0	168.250	26.796	5.470	11.315

Make sure you are able to load the data on your computer!

EDA: Cholesterol levels before and after vegetarian diet

Describe the distributions of the before & after data.

```
1 ggplot(chol, aes(x=Before)) +
2 geom_density()
```



```
1 ggplot(chol, aes(x=Before)) +
2 geom_boxplot()
```



```
1 ggplot(chol, aes(x=After)) +
2 geom_boxplot()
```


EDA: Spaghetti plot of cholesterol levels before & after diet

Visualize the individual before vs. after diet changes in cholesterol levels

What does this figure tell us?

 See code file for how to wrangle the data and create the figure - you will not be expected to do this yourself.

EDA: Differences in cholesterol levels: After - Before diet

What is this code doing?

```
chol <- chol %>%
       mutate(DiffChol = After-Before)
    head(chol, 8)
# A tibble: 8 \times 3
  Before After DiffChol
   <dbl> <dbl>
                 <dbl>
    195
          146
                   -49
2
    145
          155
                   10
    205
          178
                   -27
    159
         146
                   -13
          208
                   -36
    244
    166
          147
                   -19
    250
          202
                   -48
          215
                   -21
    236
```

Is the mean of DiffChol the same as the difference in means of After - Before? Should it be? Why or why not?

```
1 chol %>%
2 get_summary_stats(type = "common") %>%
3 gt()
```

variable	n	min	max	median	iqr	mean	sd	se	ci
Before	24	137	250	179	44.50	187.792	33.160	6.769	14.002
After	24	125	215	165	38.00	168.250	26.796	5.470	11.315
DiffChol	24	-49	13	-19	20.25	-19.542	16.806	3.430	7.096

EDA: Differences in cholesterol levels: After - Before diet

Compare and contrast the 3 distributions. Comment on shape, center, and spread.

Before & After

1 ggplot(chol, aes(x=Before)) + 2 geom_density()


```
1 ggplot(chol, aes(x=After)) +
2 geom_density()
```


DiffChol

```
1 ggplot(chol, aes(x=DiffChol)) +
2 geom_density()
```



```
1 ggplot(chol, aes(x=DiffChol)) +
2 geom_boxplot()
```


Steps in a Hypothesis Test

- 1. Set the **level of significance** lpha
- 2. Specify the **null** (H_0) and **alternative** (H_A) **hypotheses**
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 3. Calculate the **test statistic**.
- 4. Calculate the p-value based on the observed test statistic and its sampling distribution
- 5. Write a **conclusion** to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 2: Null & Alternative Hypotheses

 Question: Is there evidence to support that cholesterol levels changed after the vegetarian diet?

Null and alternative hypotheses in **words** Include as much context as possible

Null and alternative hypotheses in **symbols**

fill in the missing parts of the hypotheses.

- H_0 : The population mean difference in cholesterol levels after a vegetarian diet is *fill in*
- H_A : The population mean difference in cholesterol levels after a vegetarian diet is *fill in*

$$H_0: \delta = H_A: \delta$$

Step 3: Test statistic

1 chol %>% select(DiffChol) %>% get_summary_stats(type = "common") %>% gt()

variable n min max median iqr mean sd se ci

DiffChol 24 -49 13 -19 20.25 -19.542 16.806 3.43 7.096

$$t_{ar{x}_d} = rac{ar{x}_d - \delta_0}{rac{s_d}{\sqrt{n}}}$$

- Calculate the test statistic.
- Based on the value of the test statistic, do you think we are going to reject or fail to reject H_0 ?
- What probability distribution does the test statistic have?
- Are the **assumptions** for a paired t-test satisfied so that we can use the probability distribution to calculate the *p*-value??

Step 4: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.

Calculate the *p*-value and shade in the area representing the p-value:

Step 5: Conclusion to hypothesis test

$$H_0: \delta = 0$$
 $H_A: \delta \neq 0$

- Recall the p-value = $8.434775 \cdot 10^{-6}$
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is sufficient evidence that the (population) mean difference in cholesterol levels after a vegetarian diet is different from 0 mg/dL (*p*-value < 0.001).
- More realistic manuscript conclusion:
 - After a vegetarian diet, cholesterol levels decreased by on average 19.54 mg/dL (SE = 3.43 mg/dL, 2-sided p-value < 0.001).

95% CI for the mean difference in cholesterol levels

```
1 chol %>%
2 select(DiffChol) %>%
3 get_summary_stats(type = "common") %>%
4 gt()
```

variable	n	min	max	median	iqr	mean	sd	se	ci
DiffChol	24	-49	13	-19	20.25	-19.542	16.806	3.43	7.096

CI for μ_d (or δ): How was t^* calculated?

$$egin{aligned} ar{x}_d \pm t^* \cdot rac{s_d}{\sqrt{n}} \ -19.542 \pm 2.069 \cdot rac{16.806}{\sqrt{24}} \ -19.542 \pm 2.069 \cdot 3.43 \ -19.542 \pm 7.096 \ (-26.638, -12.445) \end{aligned}$$

Conclusion:

We are 95% that the (population) mean difference in cholesterol levels after a vegetarian diet is between -26.638 mg/dL and -12.445 mg/dL.

 Based on the CI, is there evidence the diet made a difference in cholesterol levels? Why or why not?

Running a paired t-test in R

Roption 1: Run a 1-sample t. test using the paired differences

```
H_A:\delta
eq 0
```

```
1 t.test(x = chol$DiffChol, mu = 0)

One Sample t-test

data: chol$DiffChol
t = -5.6965, df = 23, p-value = 8.435e-06
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    -26.63811 -12.44522
sample estimates:
mean of x
-19.54167
```

Run the code without mu = 0. Do the results change? Why or why not?

Roption 2: Run a 2-sample t.test with paired = TRUE option

```
H_A:\delta
eq 0
```

- For a 2-sample t-test we specify both x= and y=
- Note: mu = 0 is the default value and doesn't need to be specified

What is different in the output compared to option 1?

R option 3: Run a 2-sample t test with paired = TRUE option, but using the long data and a "formula" (1/2)

- The data have to be in a long format for option 3, where each person has 2 rows: one for Before and one for After.
 - The long dataset chol_long was created for the slide "EDA: Spaghetti plot of cholesterol levels before & after diet".
 - See the code to create it there.
- What information is being stored in each of the columns?

```
# first 16 rows of long data
     head(chol long, 16)
# A tibble: 16 × 3
                 Cholesterol
         Time
   <fct> <fct>
                       <dbl>
1 1
         Before
                         195
 2 1
         After
                         146
 3 2
         Before
                         145
 4 2
         After
                         155
 5 3
         Before
                         205
 6 3
         After
                         178
 7 4
         Before
                         159
         After
                         146
 9 5
         Before
                         244
10 5
         After
                         208
11 6
         Before
                         166
12 6
         After
                         147
13 7
         Before
                         250
14 7
         After
                         202
15 8
         Before
                         236
16 8
         After
                         215
```

R option 3: Run a 2-sample t test with paired = TRUE option, but using the long data and a "formula" (2/2)

- Use the usual t.test
- What's different is that
 - instead of specifying the variables with x= and y=,
 - we give a **formula** of the form y ~ x using just the variable names,
 - and then specify the name of the dataset using data =
- This method is often used in practice, and more similar to the coding style of running a regression model (BSTA 512 & 513)

```
Paired t-test

data: Cholesterol by Time

t = 5.6965, df = 23, p-value = 8.435e-06

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

12.44522 26.63811

sample estimates:

mean difference

19.54167
```

- What is different in the output compared to option 1?
- Rerun the test using Time ~ Cholesterol (switch the variables). What do you get?

Compare the 3 options

- How is the code similar and different for the 3 options?
- Given a dataset, how would you choose which of the 3 options to use?

```
1 # option 1
2 t.test(x = chol$DiffChol, mu = 0) %>% tidy() %>% gt() # tidy from broom package
              estimate
                        statistic
                                    p.value parameter conf.low conf.high method
                                                                                   alternative
             -19.54167 -5.696519 8.434775e-06 23 -26.63811 -12.44522 One Sample t-test two.sided
  # option 2
2 t.test(x = chol$Before, y = chol$After, mu = 0, paired = TRUE) %>% tidy() %>% gt(
                                      p.value parameter conf.low conf.high method
                  estimate
                          statistic
                                                                               alternative
                19.54167 5.696519 8.434775e-06
                                                  23 12.44522 26.63811 Paired t-test two.sided
  # option 3
2 t.test(Cholesterol ~ Time, paired = TRUE, data = chol long) %>% tidy() %>% gt()
                                      p.value parameter conf.low conf.high method
                  estimate
                          statistic
                                                                               alternative
                19.54167 5.696519 8.434775e-06
                                                 23 12.44522 26.63811 Paired t-test two.sided
```

What if we wanted to test whether the diet *decreased* cholesterol levels?

What changes in each of the steps?

- 1. Set the **level of significance** lpha
- 2. Specify the **hypotheses** H_0 and H_A
 - Alternative: one- or two-sided?
- 3. Calculate the **test statistic**.
- 4. Calculate the **p-value** based on the observed test statistic and its sampling distribution
- 5. Write a **conclusion** to the hypothesis test

R: What if we wanted to test whether the diet *decreased* cholesterol levels?

- Which of the 3 options to run a paired t-test in R is being used below?
- How did the code change to account for testing a decrease in cholesterol levels?
- Which values in the output changed compared to testing for a change in cholesterol levels? How did they change?

```
1 # alternative = c("two.sided", "less", "greater")
2 t.test(x = chol$DiffChol, mu = 0, alternative = "less") %>%
3 tidy() %>%
4 gt()
```

estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
-19.54167	-5.696519	4.217387e-06	23	-Inf	-13.6623	One Sample t-test	less

One-sided confidence intervals

Formula for a **2-sided** (1- α)% **CI**:

$$ar{x}\pm t^*\cdotrac{s}{\sqrt{n}}$$

- t* = qt(1-alpha/2, df = n-1)
- α is split over both tails of the distribution

A **one-sided** (1- α)% **CI** has all (1- α)% on just the left or the right tail of the distribution:

$$(ar{x}-t^*\cdotrac{s}{\sqrt{n}},\;\infty) \ (\infty,\;ar{x}+t^*\cdotrac{s}{\sqrt{n}})$$

- $t^* = qt(1-alpha, df = n-1)$ for a 1-sided lower (1- α)% CI
- $t^* = qt(alpha, df = n-1)$ for a 1-sided upper (1- α)% CI
- A 1-sided Cl gives estimates for a lower or upper bound of the population mean.
- See Section 4.2.3 of the V&H book for more

Today & what's next?

CI's and hypothesis tests for different scenarios:

$$ext{point estimate} \pm z^*(or\ t^*) \cdot SE, \ \ ext{test stat} = rac{ ext{point estimate} - ext{null value}}{SE}$$

Day	Book	Population parameter	Symbol	Point estimate	Symbol	SE
10	5.1	Pop mean	μ	Sample mean	$ar{x}$	$\frac{s}{\sqrt{n}}$
10	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	$ar{x}_d$	$rac{s_d}{\sqrt{n}}$
11	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$ar{x}_1 - ar{x}_2$???
12	8.1	Pop proportion	p	Sample prop	\widehat{p}	
12	8.2	Diff in pop proportions	p_1-p_2	Diff in sample proportions	$\widehat{p}_1 - \widehat{p}_2$	