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Goals for today: Part 1
(4.3, 51) Hypothesis testing for mean from one sample

e |ntroduce hypothesis testing using the case of analyzing a mean from one
sample (group)

e Steps of a hypothesis test: e Run a hypothesis testin R
1. level of significance = | 0ad a dataset - need to specify
2. null ( Hy) and alternative ( H4) location of dataset
hypotheses = R projects
3. test statistic = Runat-testinR
4. p-value = tidy() the test output using

5. conclusion broom package

(4.3.3) Confidence intervals (Cls) vs. hypothesis tests



Gooals for today: Part 2 - Class discussion
(52) Inference for mean difference from dependent/paired 2 samples

e |nference: Cls and hypothesis testing
e Exploratory data analysis (EDA) to visualize data

e Run paired t-testin R

One-sided Cls
Class discussion

e |nference for the mean difference from dependent/paired data is a special
case of the inference for the mean from just one sample, that was already
covered.

e Thus this part will be used for class discussion to practice Cls and hypothesis
testing for one mean and apply it in this new setting.

e |n class | will briefly introduce this topic, explain how it is similar and
different from what we already covered, and let you work through the slides
and code.



MoRitZ’s tip of the day: use to organize analyses

MoRitz loves using R projects to

e organize analyses and
e make it easier to load data files

e and also save output

Other bonuses include

/ e making to it easier to collaborate with others,

e including yourself when accessing files from
different computers.

We will discuss how to use projects later in today's
slides when loading a dataset.
See file Projects in RStudio for more information.



s 986°F really the mean “healthy” body temperature?

e Where did the 98.6°F value come from?

= German physician Carl Reinhold August Wunderlich determined 98.6°F (or 37°C) based on temperatures
from 25,000 patients in Leipzig in 1851.

e 1992 JAMA article by Mackowiak, Wasserman, & Levine
= They claim that 98.2°F (36.8°C) is a more accurate average body temp
m Sample: n = 148 healthy men and women aged 18 - 40 years

e InJanuary 2020, a group from Stanford published Decreasing human body temperature in the United States since
the Industrial Revolution in eLIFE.

= “determined that mean body temperature in men and women, after adjusting for age, height, weight and,
in some models date and time of day, has decreased monotonically by 0.03°C (0.05°F) per birth decade”

= September 2023 update: Defining Usual Oral Temperature Ranges in Outpatients Using an Unsupervised
Learning Algorithm in JAMA Internal Medicine

o Average is 36.64 °C (97.95 °F); “range of mean temperatures for the coolest to the warmest individuals
was 36.24 °C to 36.89 °C” (97.23 to 98.40 °F); based 2008-2017 data

o “findings suggest that age, sex, height, weight, and time of day are factors that contribute to variations
in individualized normal temperature ranges.”

e NYT article The Average Human Body Temperature Is Not 98.6 Degrees, Oct 12, 2023, by Dana G. Smith

based on the 1992 JAMA data, is there evidence to support that the population mean body
temperature is different from 98.6°F?



Question: based on the 1992 JAMA data, is there evidence
to support that the population mean body temperature is
different from 986°F~

Two approaches to answer this question:

1. Create a confidence interval (Cl) for the population mean p and determine
whether 98.6°F is inside the Cl or not.

e is 98.6°F a plausible value?

2. Run a hypothesis test to see if there is evidence that the population mean
W is significantly different from 98.6°F or not.

e This does not give us a range of plausible values for the population mean
.
e |nstead, we calculate a test statistic and p-value
= to see how likely we are to observe the sample mean x
= Or a more extreme sample mean

= assuming that the population mean p is 98.6°F.



Approach 1. Create a 95% C | for the population mean body
temperature
e Use data based on the results from the 1992 JAMA study

= The original dataset used in the JAMA article is not available

= However, Allen Shoemaker from Calvin College created a dataset with the
same summary statistics as in the JAMA article, which we will use:

Z = 98.25, s = 0.733, n = 130

Cl for pu:
c Used t* = qt(.975, df=129)
T+t —— A
vn Conclusion:
0.733 We are 95% confident that the
98.25 +1.979 . ——— (population) mean body temperature
v 130 is between 98.123°F and 98.377°F.
98.25 4+ 0.127

o o>
(98.123, 98.377) How does the Cl compare to 98.6°F:



Approach 2: Hypothesis Test

From before:
e Run a hypothesis test to see if there is evidence that the population mean
W is significantly different from 98.6°F or not.

= This does not give us a range of plausible values for the population mean
.

= |nstead, we calculate a test statistic and p-value
o to see how likely we are to observe the sample mean x
© Or a more extreme sample mean

o assuming that the population mean p is 98.6°F.

How do we calculate a test statistic and p-value?
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Recall the sampling distribution of the mean

From the ,we know that

e For “large” sample sizes (n > 30),
= the sampling distribution of the sample mean
= can be approximated by a normal distribution,with
o mean equal to the population mean value u, and

o standard deviation <=

J/n
— o
X~ N(ug=pog=—=)

e For small sample sizes, if the population is known to be normally
distributed, then

m the same result holds
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Case 1: suppose we know the population sd o

e How likely we are to observe the sample mean
= Or a more extreme sample mean,

= 3ssuming that the population mean p is 98.6°F?
e Usex = 98.25,0 = 0.733,and n = 130

Sampling distribution of mean body temperatures

9 9 9 9 9 9 9 9 9
%% Ceo Cge oy Py Ceg O O Wy,

sample mean
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Case 2: we don't know the population sd o

This is usually the case in
real life

We estimate o with the
sample standard deviation s

From last time, we know that
in this case we need to use
the t-distribution with d.f.
= n-1, instead of the normal
distribution

Question: How likely we are
to observe the sample mean
X Or a more extreme sample
mean, assuming that the
population mean w is 98.6°F?

Usez = 98.25, s = 0.733,
andn = 130
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Steps in a Hypothesis Test

1. Set the Q

2. Specify the (Hpy) and (Hy)
1. In symbols
2. In words
3. Alternative: one- or two-sided?

3. Calculate the

4, Calculate the based on the observed test statistic and its sampling
distribution
5. Write a to the hypothesis test

1. Do we reject or fail to reject Hy?
2. Write a conclusion in the context of the problem

14



Step 2: Null & Alternative Hypotheses (1/2)

In statistics, a hypothesis is a statement about the value of an unknown
population parameter.

A consists of a test between two competing hypotheses:

1.a hypothesis Hy (pronounced “H-naught”) vs.
2.an hypothesis H 4 (also denoted H)

Example of hypotheses in words:

H, : The population mean body temperature is 98.6 " F
vs. H4 : The population mean body temperature is not 98.6 F

1. Hy is a claim that there is “no effect” or “no difference of interest.”

2. H 4 is the claim a researcher wants to establish or find evidence to support.
It is viewed as a “challenger” hypothesis to the null hypothesis H|

15



Step 2: Null & Alternative Hypotheses (2/2)

Notation for hypotheses:

Hy: p = po
vs. Hy : p #, <,or,>

We call pg the null value

Hy:p# po Hy:p < po Hyp:p> po

e not choosing a priori whether e believe the population e believe the population
we believe the population mean is less than the mean is greater than
mean is greater or less than the  null value uy the null value g

null value g

e H,: p # pygis the most common option, since it's the most conservative

Example:

Hy: pu=98.6
vs. Hp: pu # 98.6

16



Step 3 (& its distribution)

Case 1: know population sd o Case 2: don’t know population sd o
75— qp —
test statistic = zz = —— L test statistic =tz = — al
N Ve
e Statistical theory tells us that zz e Statistical theory tells us that £
follows a Standard Normal follows a Student’s t distribution
distribution N (0, 1) with degrees of freedom (dfy=n — 1

Z = sample mean, ug = hypothesized population mean from H),
o = population standard deviation, s = sample standard deviation,
n = sample size

:same as CLT

e Independent observations: the observations were collected
independently.

e Approximately normal sample or big n: the distribution of the sample
should be approximately normal, or the sample size should be at least 30.
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Step 3: Test statistic calculation

Recall that z = 98.25, s = 0.733, and n = 130.
The test statistic is:

F—po  98.25 — 98.6
- 0.73

v — —5.45
Vn V130

tj:

e Statistical theory tells us that ¢z follows a Student’s t-distribution with
df.=n—1=129.

Assumptions
met?

6 3 0 3 6
t-dist with df = 129

18



Step 4: p-value

The is the probability of obtaining a test statistic just as extreme or
more extreme than the observed test statistic assuming the null hypothesis H|
is true.

e The p-value IS a qua ntification of Sampling distribution of mean body temperatures
“surprise”

= Assuming Hy is true, how
surprised are we with the observed
results?

= [x: assuming that the true mean
body temperature is 98.6°F, how Bap Bay sy B ey Ve U sy %,
surprised are we to get a sample e e
mean of 98.25°F (or more
extreme)?

e |f the p-value is “small,” it means
there’s a small probability that we
would get the observed statistic (or
more extreme) when Hj is true.

19



Step 4: p-value calculation

Calculate the p-value using the Student’s t-distribution with
df.=n—1=129:

p — value = P(T < —5.45) + P(T > 5.45) = 2.410889 x 10~

# use pt() instead of pnorm()
# need to specify df
2*pt(-5.4548, df = 130-1, lower.tail = TRUE)

[1] 2.410889e-07

-6 -3 0 3 6
t-dist with df = 129
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Step 4: p-value estimation using t-table

e {-table only gives us bounds on the p-value

e Recall from using the t-table for Cls, that the table gives us the cutoff values
for varying tail probabilities (1-tail & 2-tail)

e Find the row with the appropriate degrees of freedom
m Use next smallest df in table if actual df not shown
m |.e, fordf=129, usedf =100 in table

e Figure out where the test statistic's absolute value is in relation to the values
in the columns, i.e. between which columns is the test statistic?

e The header rows for those columns gives the lower & upper bounds for the
p-value

= Choosing one-tail vs. two-tail test, depends on the alternative hypothesis
Hy4.

» For a2-sidedtest ( Hyg : i # o), use two-tails
= Foral1-sidedtest( H4: pu < or > ), use one-tail

21



Using a t-table to estimate p-value

466

B.2 t-Probability Table

APPENDIX B. DISTRIBUTION TABLES

T T T T

T T

[ T T T T

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1
One talil One tail Two tails
Figure B.1: Tails for the ¢-distribution.

onetail | 0.100 0.050 0.025 0.010  0.005

two tails 0.200 0.100 0.050 0.020 0.010

df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92

3 1.64 2.35 3.18 4.54 5.84

4 1.53 213 2.78 3.75 4.60

5 1.48 2.02 2.57 3.36 4.03

6 1.44 1.94 2.45 3.14 3.71

7 1.41 1.89 2.36 3.00 3.50

8 1.40 1.86 2.31 2.90 3.36

9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11

12 1.36 1.78 2.18 2.68 3.05

13 1.35 1.77 2.16 2.65 3.01

14 1.35 1.76 2.14 2.62 2.98

15 1.34 1.75 2.13 2.60 2.95

16 1.34 1.75 2.12 2.58 2.92

17 1.33 1.74 2.11 2.57 2.90

18 1.33 1.73 2.10 2.55 2.88

19 1.33 1.73 2.09 2.54 2.86

20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83

22 1.32 1.72 2.07 2.51 2.82

23 1.32 1.71 2.07 2.50 2.81

24 1.32 1.71 2.06 2.49 2.80

25 1.32 1.71 2.06 2.49 2.79

26 1.31 1.71 2.06 2.48 2.78

27 1.31 1.70 2.05 2.47 2.77

28 1.31 1.70 2.05 2.47 2.76

29 1.31 1.70 2.05 2.46 2.76

30 1.31 1.70 2.04 2.46 2.75

2

1

3

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74
32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70
41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63
100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
00 | 1.28 1.65 1.96 2.33 2.58

467
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Step 1: Significance Level o

e Before doing a hypothesis test, we set a cut-off for how small the p-value
should be in order to reject Hy.

e We call this the , denoted by the Greek symbol

e Typical & values are
= 0.05 - most common by far!!
= 0.01 and 0.1
e Decision rule:
= \When p-value < o, we “reject the null hypothesis H."
= When p-value > «, we “fail to reject the null hypothesis Hy."

Important

e “Failing to reject” Hy is NOT the same as “accepting” Hy!

e By failing to reject Hy we are just saying that we don't have sufficient evidence to support the alternative
H .

e This does not imply that H is true!!

23



Step 5: Conclusion to hypothesis test

Hy:pu=98.6
vs. Hy : pu = 98.6

e Recall the p-value = 2.410889 x 10~
e Use o =0.05.

e Do we reject or fail to reject Hy?

Conclusion statement:

e Basic: (“stats class” conclusion)

= There is sufficient evidence that the (population) mean body temperature
is discernibly different from 98.6°F ( p-value < 0.001).

e Better: (“manuscript style” conclusion)

= The average body temperature in the sample was 98.25°F (95% Cl 98.12,
98.38°F), which is discernibly different from 98.6°F ( p-value < 0.001).

24



Confidence Intervals vs. Hypothesis Testing

e See also V&H Section 4.3.3
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Running a t-testin R

Working directory

Load a dataset - need to specify location of dataset
R projects

Run a t-testin R

tidy () the test output using broom package

27



Working directory

e |n order to load a dataset from a file, you need to tell R where the dataset is
located

e To do this you also need to know the location from which R is working,
i.e. your working directory

e You can figure out your working directory by running the getwd () function.

getwd ()

[1] "/Users/niederha/Library/CloudStorage/OneDrive-OregonHealth&ScienceUniversity/teaching/BSTA
511/F23/0_webpage/BSTA 511 F23"
e Above is the working directory of this slides file

= |n this case, this is NOT the location of the actual gmd file though!

e To make it easier to juggle the working directory, the location of your gmd
file, and the location of the data,

= | highly recommend using R Projects!

28



R projects

e | highly, highly, HIGHLY recommend using R Projects to organize your
analyses and make it easier to load data files and also save output.

e When you create an R Project on your computer, the Project is associated
with the folder (directory) you created it in.

= This folder becomes the “root” of your working directory, and RStudio’s
point of reference from where to load files from and to.

e | create separate Projects for every analysis project and every class | teach.

e You can run multiple sessions of RStudio by opening different Projects, and
the environments (or working directory) of each are working independently

of each other.

O Note
e Although we are using Quarto files,
= | will show how to set up and use a “regular” R Project

= instead of “Quarto Project”

e Quarto Projects include extra features and thus complexity. Once you are used to how regular R Projects
work, you can try out a Quarto Project.

29



How to create an R Project

e Demonstration in class recording
e Posit's (RStudio’s) directions for creating Projects
m https://support.rstudio.com/hc/en-us/articles/200526207-Using-RStudio-

Projects
e See file Projects in RStudio for more information on R Projects.
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L oad the dataset

e The data are in a csv file called BodyTemperatures.csv
e You need to tell R where the dataset is located!
e | recommend saving all datasets in a folder called data.

= The code | will be providing you will be set up this way.

e To make it easier to specify where the dataset is located, | recommend using
the here() function from the here package: here: :here().

# read csv() is a function from the readr package that is a part of the tidyverse
library(here) # first install this package

BodyTemps <- read csv(here::here("data", "BodyTemperatures.csv'"))
# location: look in "data" folder
# for the file "BodyTemperatures.csv'

glimpse (BodyTemps)

Rows: 130
Columns: 3
$ Temperature <dbl> 96.3, 96.7, 96.9, 97.0, 97.1, 97.1, 97.1, 97.2, 97.3, 97.4..
S Gender loll> i, i, i, d, i, A, A, d, d, d, L, oL, oAy, L, Ay, A, L, L, 1,
$ HeartRate <dbl> 70, 71, 74, 80, 73, 75, 82, 64, 69, 70, 68, 72, 78, 70, 75..
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here: :here()

General use of here: :here()
here::here("folder_name", "filename")

Resources for here: :here():

e how to use the here package (Jenny
Richmond)

e Ode to the here package (Jenny
Bryan)

Project-oriented workflow (Jenny
Bryan)

Artwork by @allison_horst
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t. test: base R’s function for testing one mean

e Use the body temperature example with H4 : u # 98.6
e We called the dataset BodyTemps when we loaded it

glimpse (BodyTemps)

Rows: 130
Columns: 3
$ Temperature <dbl> 96.3, 96.7, 96.9, 97.0, 97.1, 97.1, 97.1, 97.2, 97.3, 97.4..
S Gender ol i, i, d, d, A&, A&, &, &, d, d, &, A, d, A, A, A, A, L, i, i
S HeartRate <dbl> 70, 71, 74, 80, 73, 75, 82, 64, 69, 70, 68, 72, 78, 70, 75..

(temps ttest <- t.test(x = BodyTemps$Temperature,
# alternative = "two.sided", # default
mu = 98.6))

One Sample t-test

data: BodyTemps$Temperature
t = -5.4548, df = 129, p-value = 2.411le-07
alternative hypothesis: true mean is not equal to 98.6
95 percent confidence interval:
98.12200 98.37646
sample estimates:
mean of x
98.24923

Note that the test output also gives the 95% Cl using the t-distribution.
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tidy() the t.test output

e Use the tidy () function from the broom package for briefer output in table
format that's stored as a tibble

e Combined with the gt () function from the gt package, we get a nice table

tidy(temps ttest) %>%
gt()

estimate statistic p.value parameter conf.low conf.high method alternative

08.24923 -5.454823 2.410632e-07 129 98.122 98.37646 One Sample t-test two.sided

e Since the tidy() outputis a tibble, we can easily pull() specific values
from it:

Using base R's $ Or the tidyverse way: using pull()
from dp lyr package

tidy(temps ttest)S$p.value
[1] 2.410632e-07 tidy(temps ttest) %>% pull(p.value)

[1] 2.410632e-07

Advantage: quick and easy
Advantage: can use together with
piping (%>%) other functions
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What's next?

ClI's and hypothesis testing for different scenarios:

Day Section Population Symbol Point Symbol
parameter estimate

10 5.1 Pop mean I Sample mean 7

10 5.2 Pop mean of fq OF O Sample mean T4
paired diff of paired diff

11 5.3 Diff in pop U1 — U2 Diff in sample Z; — @9

means means

12 8.1 Pop D Sample prop D
proportion

12 8.2 Diff in pop p1 — P2 Diff in sample P} — Do

prop’s

prop’s
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