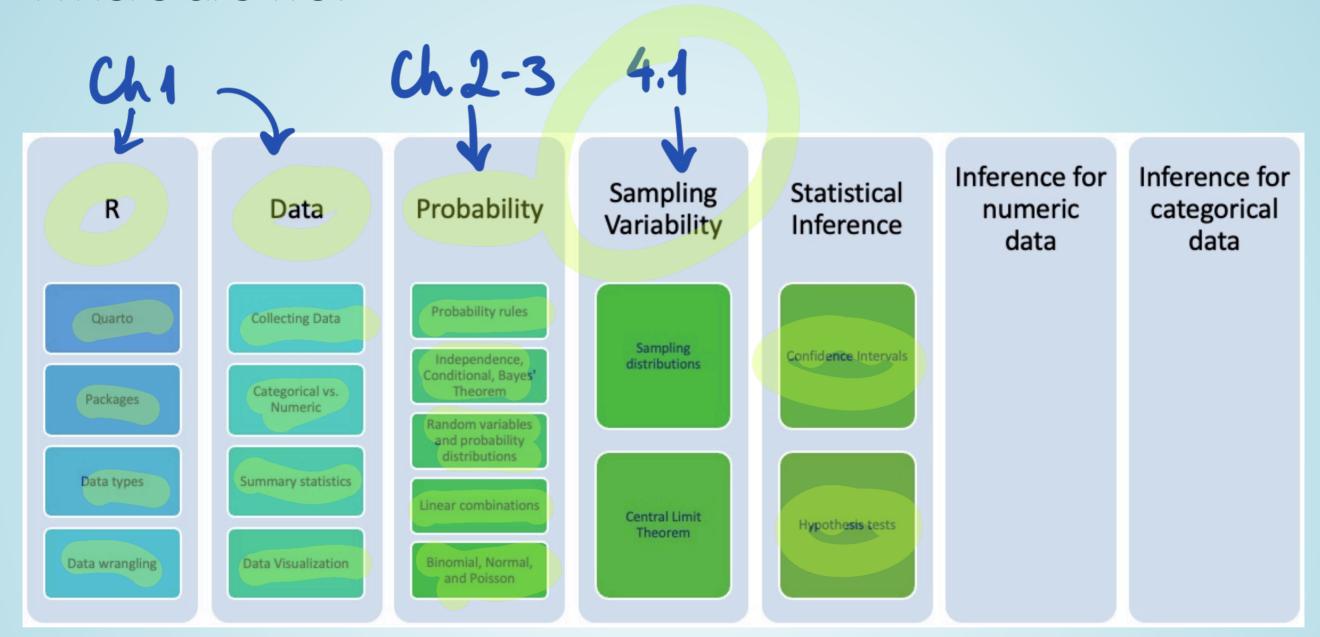
Section 4.1 Day 8: Variability in estimates

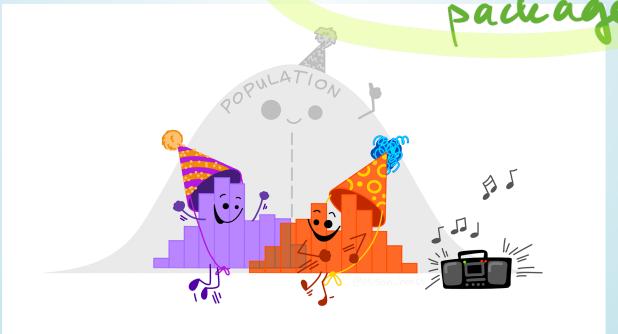

BSTA 511/611

Meike Niederhausen, PhD

OHSU-PSU School of Public Health

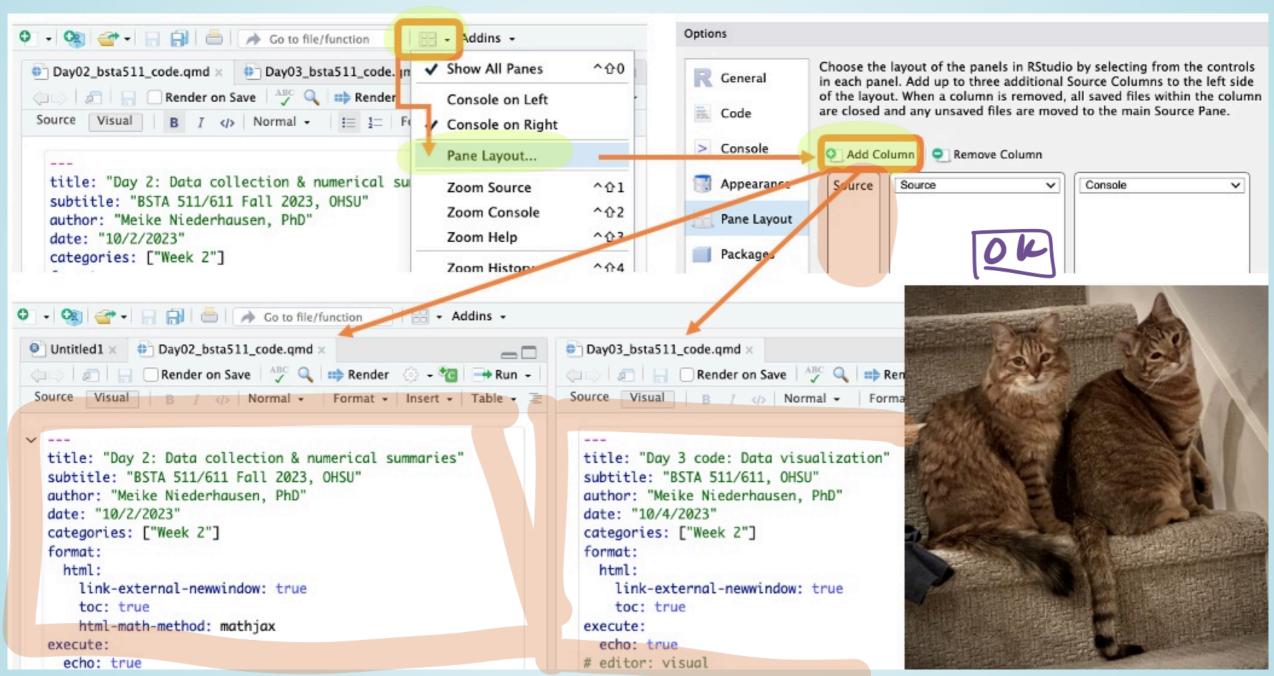
2023-10-23

Where are we?


Goals for today

Section 4.1

- Sampling from a population
 - population parameters vs. point estimates
 - sampling variation
- Sampling distribution of the mean
 - Central Limit Theorem



simulations in R

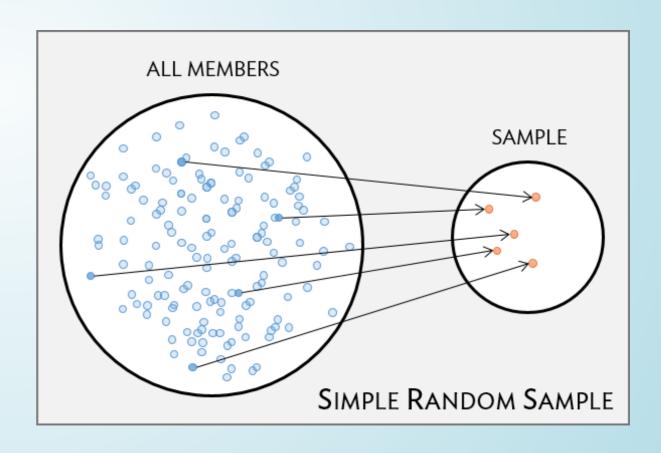
MoRitz's tip of the day: add a code pane in RStudio

Do you want to be able to view two code files side-by-side? You can do that by adding a column to the RStudio layout.

See https://posit.co/blog/rstudio-1-4-preview-multiple-source-columns/ for more information.

Population vs. sample (from section 1.3)

(Target) Population


- group of interest being studied
- group from which the sample is selected
 - studies often have inclusion and/or exclusion criteria

Sample

- group on which data are collected
- often a small subset of the population

Simple random sample (SRS)

- each individual of a population has the same chance of being sampled
- randomly sampled
- considered best way to sample

Population parameters vs. sample statistics

Population parameter

Sample statistic (point estimate)

Our hypothetical population: YRBSS

Youth Risk Behavior Surveillance System (YRBSS)

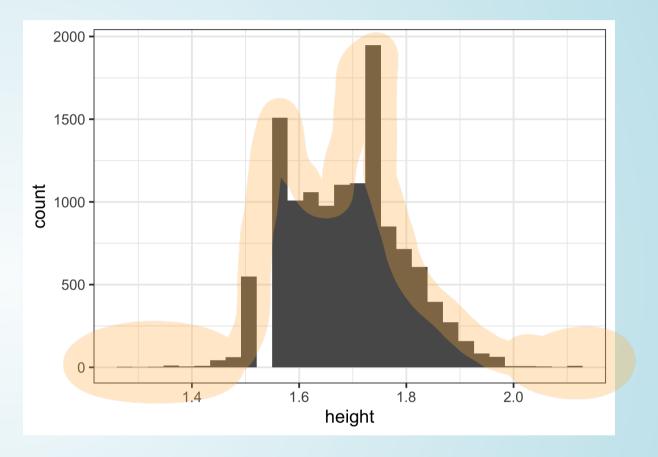
- Yearly survey conducted by the US Centers for Disease Control (CDC)
- "A set of surveys that track behaviors that can lead to poor health in students grades 9 through 12."
- Dataset yrbss from oibiostat pacakge contains responses from n = 13,572 participants in 2013 for a subset of the variables included in the complete survey data

```
1 library(oibiostat)
                                                            dim(yrbss)
  2 data("yrbss") #load the data
                                                       [1] 13583
  3 # ?yrbss
    names(yrbss)
 [1] "age"
                               "gender"
                               "hispanic"
    "grade"
                               "height"
 [5] "race"
                               "helmet.12m"
 [7] "weight"
                               "physically.active.7d"
 [9] "text.while.driving.30d"
[11] "hours.tv.per.school.day"
                               "strength.training.7d"
[13] "school.night.hours.sleep"
```

1 https://www.cdc.gov/healthyyouth/data/yrbs/index.htm

Getting to know the dataset: glimpse()

```
1 glimpse(yrbss) # from tidyverse package (dplyr)
```


```
Rows: 13,583
Columns: 13
$ age
                          <int> 14, 14, 15, 15, 15, 15, 15, 14, 15, 15, 15, 1...
                          <chr> "female", "female", "female", "female", "fema...
$ gender
                          $ grade
                          <chr> "not", "not", "hispanic", "not", "not", "not"...
$ hispanic
$ race
                          <chr> "Black or African American", "Black or Africa...
                          <dbl> NA, NA, 1.73, 1.60, 1.50, 1.57, 1.65, 1.88, 1...
$ height
                          <dbl>NA, NA 84.37, 55.79, 46.72, 67.13, 131.54, 7...
$ weight
                          <chr> /never", "never", "never", "never", "did not ...
$ helmet.12m
                          <chr>/"0", NA, "30", "0", "did not drive", "did not...
$ text.while.driving.30d
                          <int> 4, 2, 7, 0, 2, 1, 4, 4, 5, 0, 0, 0, 4, 7, 7, ...
$ physically.active.7d
                          <chr> "5+", "5+", "5+", "2", "3", "5+", "5+", "5+",...
$ hours.tv.per.school.day
$ strength.training.7d
                          <int> 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 7, 7, ...
$ school.night.hours.sleep <chr> "8", "6", "<5", "6", "9", "8", "9", "6", "<5"...
```

NA: missing values

Height & weight variables

```
yrbss %>%
     select(height, weight) %>%
      summary()
   height
                 weight
     :1.270
Min.
              Min. : 29.94
1st Qu.:1.600 1st Qu.: 56.25
Median :1.680 Median : 64.41
      :1.691
                    : 67.91
              Mean
Mean
3rd Qu.:1.780
              3rd Qu.: 76.20
      :2.110
              Max.
                    :180.99
Max.
NA's
              NA's
      :1004
                    :1004
```

```
1 ggplot(data = yrbss,
2          aes(x = height)) +
3         geom_histogram()
```


Transform height & weight from metric to to standard

Also, drop missing values and add a column of id values

```
meters
    yrbss2 <- yrbss %>%
                                         # save new dataset with new name
                                         # add variables for
      mutate(
        height.ft = 3.28084*height,
                                              height in feet
        weight.lb = 2.20462*weight # weight in pounds
     ) %>%
      drop na(height.ft, weight.rb) %>% # drop rows w/ missing height/weight values
      mutate(id = 1:nrow(.)) %>%  # add id column
      select(id, height.ft, weight.lb) # restrict dataset to columns of interest
    head(yrbss2)
 id height.ft weight.lb
    5.675853 186.0038
    5.249344 122.9957
    4.921260 102.9998
    5.150919 147.9961
   5.413386 289.9957
   6.167979 157.0130
 1 dim(yrbss2)
[1] 12579
           3
 1 # number of rows deleted that had missing values for height and/or weight:
 2 nrow(yrbss) - nrow(yrbss2)
[1] 1004
```

yrbss2 summary

```
1 summary(yrbss2)
     id
               height.ft
                           weight.lb
Min. :
             Min. :4.167
                           Min. : 66.01
1st Qu.: 3146 1st Qu.:5.249
                           1st Qu.:124.01
Median : 6290 Median :5.512
                           Median :142.00
Mean : 6290 Mean :5.549 Mean :149.71
3rd Qu.: 9434 3rd Qu.:5.840
                           3rd Qu.:167.99
Max. :12579
             Max. :6.923
                           Max. :399.01
```

Another summary:

```
1 yrbss2 %>%
2 get_summary_stats(type = "mean_sd") %>%
3 kable()
```

variable	n	mean	sd
id	12579	6290.000	3631.389
height.ft	12579	5.549	0.343
weight.lb	12579	149.708	37.254

Random sample of size n = 5 from yrbss2

Take a random sample of size n = 5
from yrbss2:

First Install

moder notive

```
1 library (moderndive)
     samp n5 rep1 <- yrbss2 %>%
       rep sample n(size = 5,
                       reps = 1,
                       replace = FALSE)
     samp n5 rep1
# A tibble: 5 \times 4
# Groups:
          replicate [1]
             id height.ft weight.lb
  replicate
     <int> <int>
                              <dbl>
                     <dbl>
           5869
                      5.15
                               145.
         1 6694
                      5.41
                               127.
         1 2517
                      5.74
                               130.
         1 5372
                      6.07
                               180.
           5403
                      6.07
                               163.
```

Calculate the mean of the random sample:

Would we get the same mean height if we took another sample?

Sampling variation

 If a different random sample is taken, the mean height (point estimate) will likely be different

Calculate the mean of the 2nd

random sample:

this is a result of sampling variation

Take a 2nd random sample of size n = 5 from yrbss2:

```
means hight samp n5 rep1 <-
     samp n5 rep1 <- yrbss2 %>%
                                                             samp_n5_rep1 %>%
       rep sample n(size = 5,
                                                             summarise(
                       reps = 1,
                       replace = FALSE)
                                                                mean height = mean(height.ft))
                                                        5
     samp n5 rep1
                                                          means hight samp n5 rep1
# A tibble: 5 \times 4
# Groups:
         replicate [1]
                                                      # A tibble: 1 \times 2
              id height ft weight.lb
 replicate
                                                        replicate mean height
     <int> <int>
                    <dbl>
                              <dbl>
                                                           <int>
1
            2329
                      6.07
                               182.
                                                                        5.78
2
         1 8863
                     5.25
                               125.
3
         1 8058
                      5.84
                               135.
             335
                     6.17
                               235.
         1 4698
                     5.58
                               124.
```

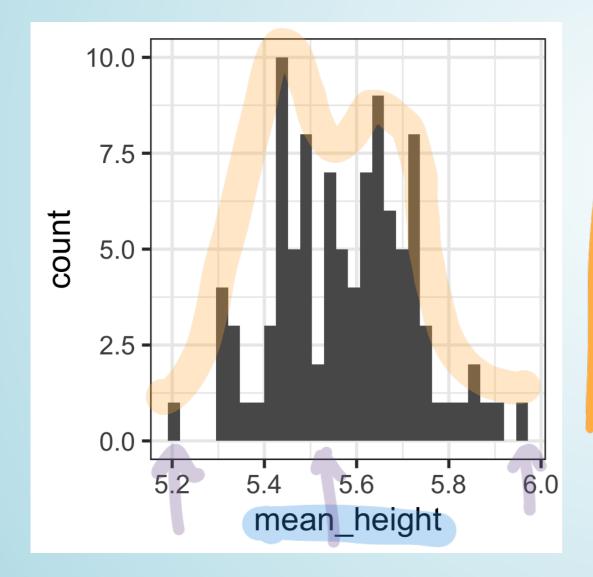
Did we get the same mean height with our 2nd sample?

100 random samples of size n = 5 from yrbss2 Take 100 random samples of size Calculate the mean for each of the

n = 5 from yrbss2:

```
samp n5 rep100 <- yrbss2 %>%
       rep sample n(size = 5,
                        reps = 100,
                       replace = FALSE)
     samp n5 rep100
                           5×100
# A tibble: 500 × 4
# Groups:
           replicate [100]
               id height.ft weight.lb
   replicate
      <int> <int>
                      <dbl>
                               <dbl>
             6483
                       5.51
                               145.
 1
                                90.0
 2
             9899
                       4.92
 3
             6103
                       5.68
                               118.
          1 2702
                               150.
                       5.68
          1 11789
                       5.35
                               115.
          2 10164
                       5.51
                               140.
             5807
                       5.41
                               215.
          2 9382
                       5.15
                               98.0
          2 4904
                       6.00
                               196.
10
              229
                       6.07
                               101.
# i 490 more rows
```

100 random samples:


```
means hght samp n5 rep100 <-
       samp n5 rep100 %>%
       group by(replicate) %>%
       summarise(
         mean height = mean(height.ft))
    means_hght_samp_n5_rep100
# A tibble: 100 × 2
  replicate mean height
      <int>
                 <dbl>
                  5.43
                  5.63
                  5.34
                  5.70
                  5.90
                  5.37
                  5.49
                  5.60
                  5.50
         10
                  5.68
# i 90 more rows
```

How close are the mean heights for each of the 100 random samples?

Distribution of 100 sample mean heights (n = 5)

Describe the distribution shape.

```
1 ggplot(
2 means_hght_samp_n5_rep100,
3 aes(x = mean_height)) +
4 geom_histogram()
```


Calculate the mean and SD of the 100 mean heights from the 100 samples:

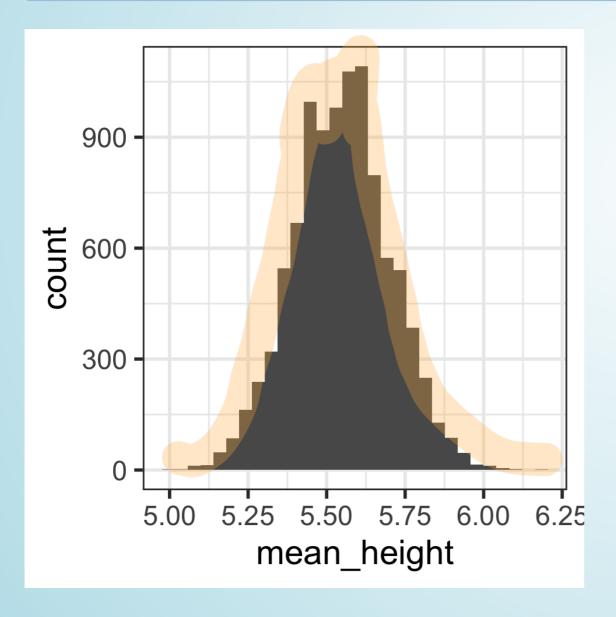
Is the mean of the means close to the "center" of the distribution?

10,000 random samples of size n = 5 from yrbss2

Take 10,000 random samples of size n = 5 from yrbss2:

```
samp n5 rep10000 <- yrbss2 %>%
       rep sample n(size = 5,
                        reps = 10000,
                        replace = FALSE)
     samp n5 rep10000
# A tibble: 50,000 \times 4
# Groups:
         replicate [10,000]
   replicate
               id height.ft weight.lb
       <int> <int>
                      <dbl>
                                <dbl>
          1 6383
                       5.35
                                126.
 1
 2
             4019
                       5.41
                                107.
 3
                       5.25
             4856
                                135.
          1 9988
                       5.58
                                120.
          1 2245
                       6.17
                                 270.
          2 10580
                       5.68
                                 155.
 7
             2254
                       5.84
                                 159.
                       5.09
            8081
                                 110.
          2 10194
                       5.35
                                 115.
                       5.35
10
          2 7689
                                 135.
# i 49,990 more rows
```

Calculate the mean for each of the 10,000 random samples:


```
means_hght_samp_n5_rep10000 <-
       samp n5 rep10000 %>%
       group by(replicate) %>%
       summarise(
         mean height = mean(height.ft))
  6
     means hight samp n5 rep10000
# A tibble: 10,000 \times 2
  replicate mean height
      <int>
                  <dbl>
          1
                  5.55
                  5.46
                  5.49
                  5.60
                  5.47
                  5.83
                  5.68
                  5.47
                  5.37
10
         10
                  5.15
# i 9,990 more rows
```

How close are the mean heights for each of the 10,000 random samples?

Distribution of 10,000 sample mean heights (n = 5)

Describe the distribution shape.

```
1 ggplot(
2 means_hght_samp_n5_rep10000,
3 aes(x = mean_height)) +
4 geom_histogram()
```


Calculate the mean and SD of the 10,000 mean heights from the 10,000 samples:

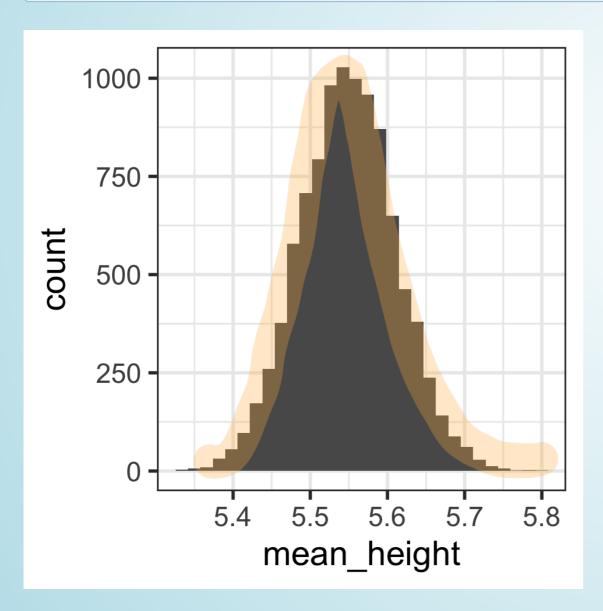
Is the mean of the means close to the "center" of the distribution?

10,000 samples of size n = 30 from yrbss2

Take 10,000 random samples of size n = 30 from yrbss2:

```
samp n30 rep10000 <- yrbss2 %>%
       rep sample n(size = 30,
                        reps = 10000,
                        replace = FALSE)
     samp n30 rep10000
# A tibble: 300,000 \times 4
          replicate [10,000]
# Groups:
   replicate
               id height.ft weight.lb
       <int> <int>
                                <dbl>
                      <dbl>
             3871
                       5.25
 1
                                 115.
 2
          1 12090
                       5.15
                                 125.
 3
                       5.58
              241
                                 119.
             4570
                       5.58
                                 140.
 5
             4131
                       5.35
                                 143.
          1 11513
                       5.35
                                 135.
 7
             9663
                       5.25
                                 125.
                       5.25
             3789
                                 160.
 9
              442
                       5.15
                                 130.
10
          1 11528
                       5.51
                                 200.
# i 299,990 more rows
```

Calculate the mean for each of the 10,000 random samples:

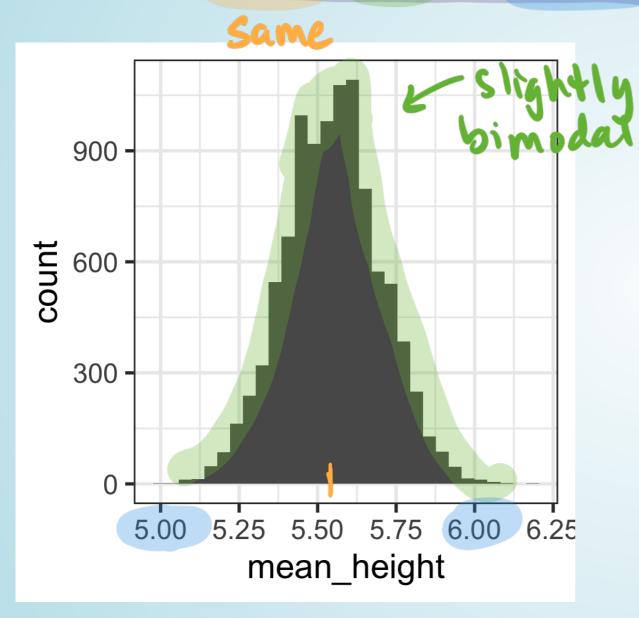

```
means_hght_samp n30 rep10000 <-
       samp n30 rep10000 %>%
       group by (replicate) %>%
       summarise(mean height =
  5
                   mean(height.ft))
  6
     means_hght_samp_n30_rep10000
# A tibble: 10,000 \times 2
  replicate mean height
      <int>
                  <dbl>
          1
                  5.48
                  5.63
                  5.46
                  5.46
                  5.51
                  5.54
                  5.56
                  5.51
                  5.51
10
         10
                  5.50
# i 9,990 more rows
```

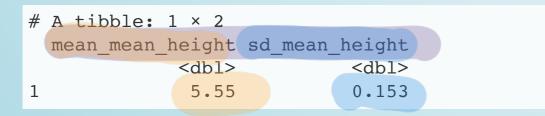
How close are the mean heights for each of the 10,000 random samples?

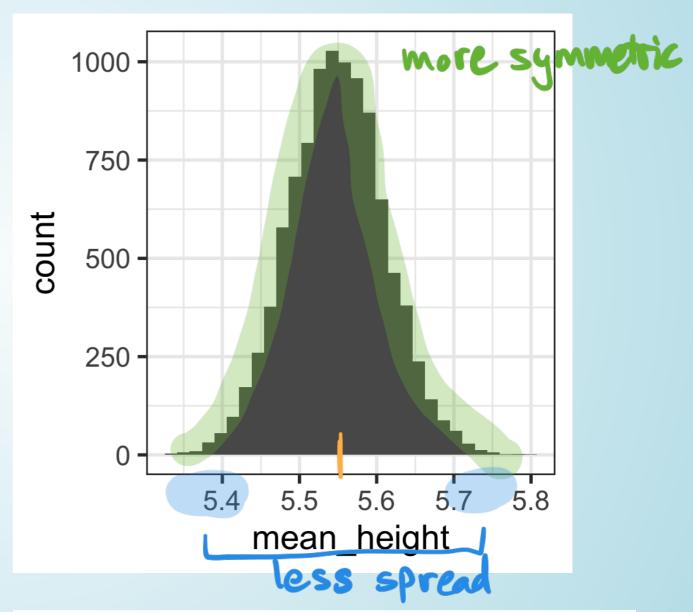
Distribution of 10,000 sample mean heights (n = 30)

Describe the distribution shape.

```
1 ggplot(
2 means_hght_samp_n30_rep10000,
3 aes(x = mean_height)) +
4 geom_histogram()
```

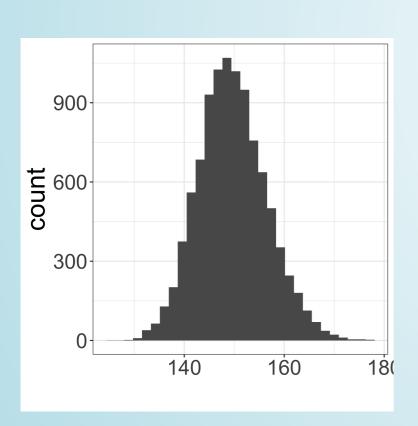



Calculate the mean and SD of the 10,000 mean heights from the 10,000 samples:

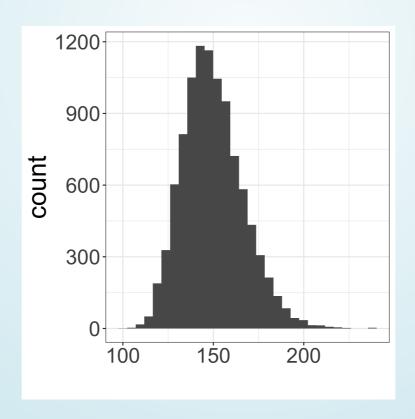

Is the mean of the means close to the "center" of the distribution?

Compare distributions of 10,000 sample mean heights when n = 5 (left) vs. n = 30 (right)

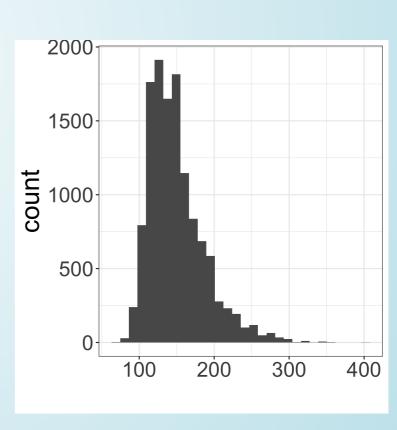
How are the center, shape, and spread similar and/or different?



Sampling high schoolers' weights

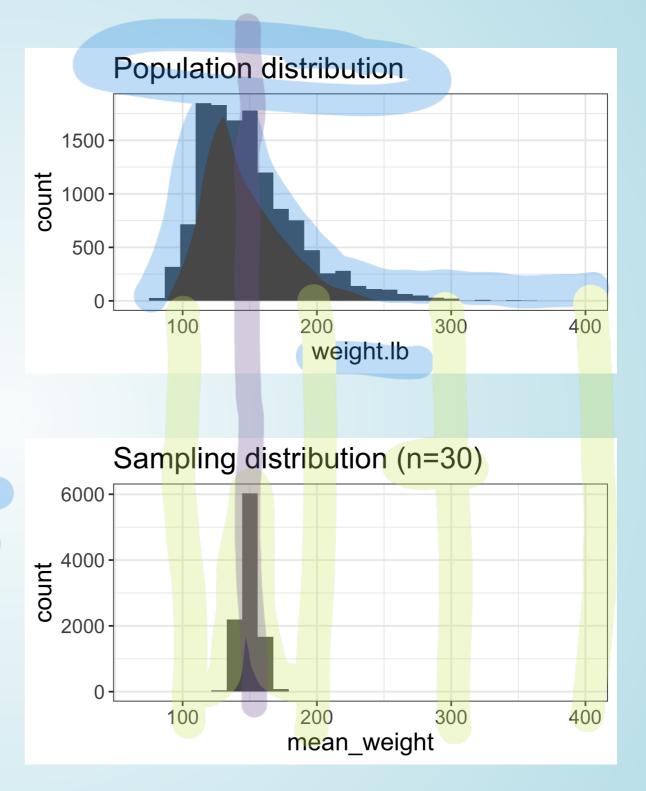

Which figure is which?

- Population distribution of weights
- Sampling distribution of mean weights when n=5
- Sampling distribution of mean weights when n=30.


Α

В

 C

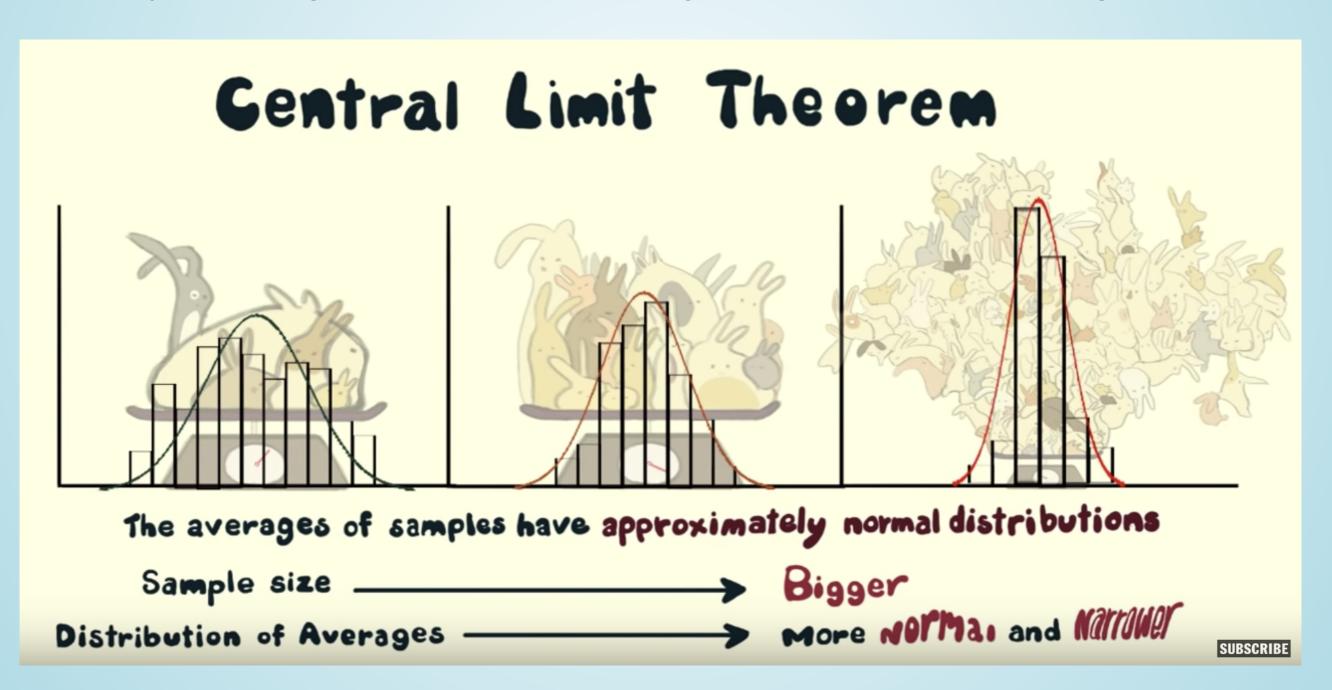


Class

discussion

The sampling distribution of the mean

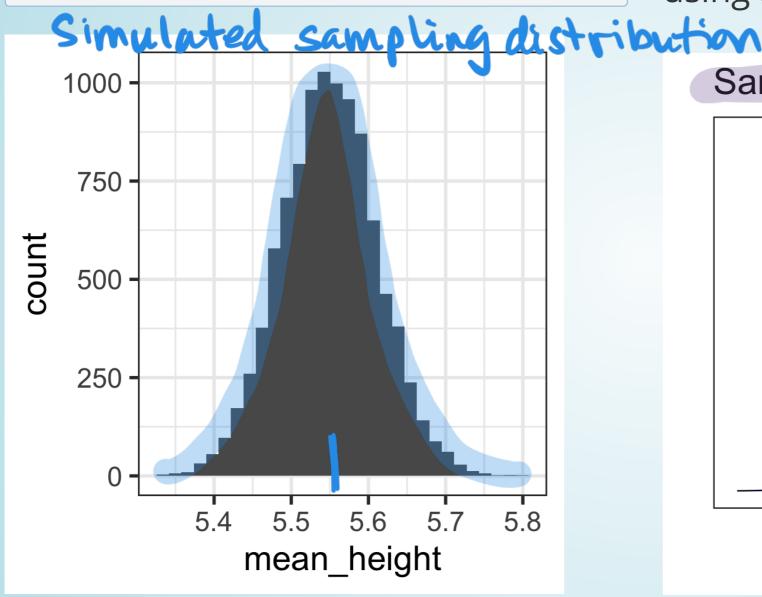
- The sampling distribution of the mean is the distribution of sample means calculated from repeated random samples of the same size from the same population
- Our simulations show approximations of the sampling distribution of the mean for various sample sizes
- The theoretical sampling distribution is based on all possible samples of a given sample size n.

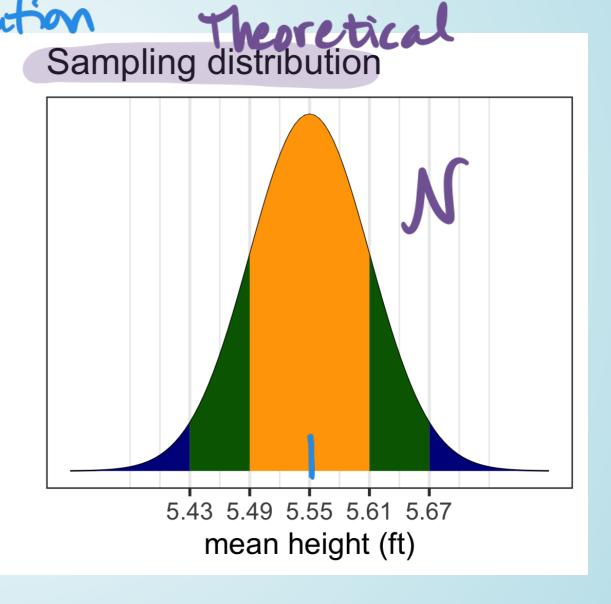


The Central Limit Theorem (CLT)

- For "large" sample sizes ($n \ge 30$),
 - the sampling distribution of the sample mean
 - can be approximated by a normal distribution, with
 - \circ mean equal to the population mean value μ , and
 - o standard deviation $\frac{\sigma}{\sqrt{n}}$ $X \sim N \mu_{\overline{x}} = \mu, \sigma_{\overline{x}} = \overline{m}$ $X = \frac{2}{N} X_{1}$ $X = \frac{2}{N} X_{2}$ $X = \frac{2}{N} X_{1}$ $X = \frac{2}{N} X_{2}$
- For small sample sizes, if the population is known to be normally distributed, then
 - the sampling distribution of the sample mean
 - is a normal distribution, with
 - \circ *mean* equal to the *population mean* value μ , and
 - \circ standard deviation $\frac{\sigma}{\sqrt{n}}$

The cutest statistics video on YouTube

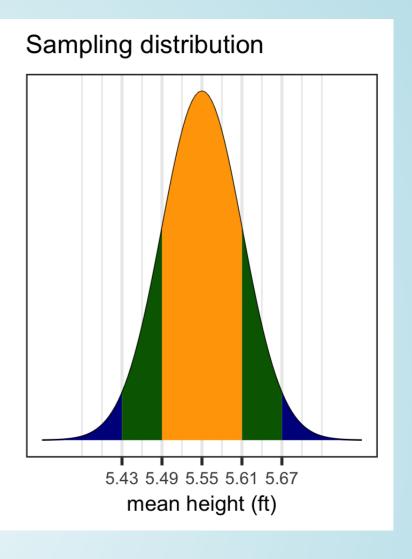

- Bunnies, Dragons and the 'Normal' World: Central Limit Theorem
 - Creature Cast from the New York Times
 - https://www.youtube.com/watch?v=jvoxEYmQHNM&feature=youtu.be



Sampling distribution of mean heights when n = 30 (1/2)

```
1 ggplot(
2 means_hght_samp_n30_rep10000,
3 aes(x = mean_height)) +
4 geom_histogram()
```

CLT tells us that we can model the sampling distribution of mean heights using a normal distribution.



Sampling distribution of mean heights when n = 30 (2/2)

Mean and SD of population:

```
1 (mean_height.ft <- mean(yrbss2$height.ft))
[1] 5.548691
1 (sd_height.ft <- sd(yrbss2$height.ft))
[1] 0.3434949
1 sd_height.ft/sqrt(30)
[1] 0.06271331</pre>
```

Mean and SD of simulated sampling distribution:

Why is the mean
$$\mu$$
 & the standard error $\frac{\sigma}{\sqrt{n}}$?

Show
$$Var(\bar{X}) = \frac{G^2}{n}$$
:
$$Var(\bar{X}) = Var(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(\bar{X}_i) = \frac{1}{n^2} \sum_{i=1}^{n} G^2 = \frac{1}{n^2} (nG^2) = \frac{G^2}{n}$$

$$\Rightarrow SE_{\bar{X}} = SD(\bar{X}) = Var(\bar{X}) = \frac{G^2}{n} = \frac{G}{n}$$

Applying the CLT

n=30

What is the probability that for a random sample of 30 high schoolers, that

their mean height is greater than 5.6 ft?

$$\overline{X}$$
 Find $P(\overline{X} > 5.6)$

Since $N \ge 30 \Rightarrow USE CLT : \overline{X} \sim \mathcal{N}\left(M_{\overline{X}} = 5.55, C_{\overline{X}} = 0.34\right)$
 $P(\overline{X} > 5.6) = P(Z_1 > \frac{5.6 - 5.55}{0.06}) = P(Z_1 > 0.81)$

 $= 1 - P(Z_1 \pm 0.81)$ = 1 - 0.7910 = 0.2090

⇒ ≈ 21% chance

Class Discussion

Slide 21: matching

Problems from Homework 4:

R1: Youth weights (YRBSS)

Book exercise: 4.2

Non-book exercise: Ethan Allen